T型微通道内气液多相体系模拟与实验研究
发布时间:2021-09-07 15:45
微流体技术是近年发展起来的新兴技术,20世纪80年代微机电系统(MEMS)提出,自然科学开始不断向微小化、集成化方向发展,那么就对微观尺度下控制、操作复杂流体提出了更高的要求。微通道是微流体系统的基本组成单元,微流控系统功能的实现,就是在不同结构尺寸微通道叠加下完成的。本文通过实验及数值模拟的对比研究,分析了微通道内气液两相流、气液液三相流流动特性,所得结果可为分析设计微通道提供理论参考依据。微通道气液两相流模拟中,采用CFD方法进行数值模拟。提出了一种局部网格加密的网格划分方法,能够清楚的捕捉Taylor流中在微通道壁面处的液膜。定性的分析了网格独立性,使模拟更加准确。同时依照本文模拟参数设计了新的实验装置流程,为同类实验研究提供了新的思路方法。在相同的实验和模拟工况下,处理并对比数据后,做了以下工作:观察了微通道气液内两相流流型,弹状流生成规律及流型转换条件;液柱及气泡长度随液速变化规律基本一致,随着同相速率的增加而增加,随着另一相速率的增加而减小;毛细管中壁面接触角的变化并不会影响Taylor气泡形成,当接触角在0-90°之间时长度变化很小,当大于90°时气泡生成周期明显增大;毛...
【文章来源】:郑州大学河南省 211工程院校
【文章页数】:94 页
【学位级别】:硕士
【部分图文】:
图2.1两相流常见流型
2Lf Lp pL Lφ Δ Δ = ylor 气泡长度研究长度是泰勒流的重要参数,微通道中弹状流传热、传质、压降弹长度的大小。而气弹长度并不像其他流动参数如流体性质,可设置,因此很难精确控制。现有的研究中研究者得出的关于公式也存在着明显的不一致性,图 2.4 中 LB 代表气泡长度,。
a)润湿 (b)不润湿图 2.6 接触角示意图接触角一般用θ表示。变化范围通常在0 180 之间,两端极限分别代表了面与液体之间完全润湿和完全不润湿两个状态。Thomas Young 提出了关于平接触角的理论,相关的 Young 方程仍是目前固液接触角计算的经典方程,如式 2.5,cos( )SG SL LGθ = σ σ σ(2.5中,SGσ、SLσ、LGσ分别表示气液、气固、液固界面的表面张力。微纳流体的润湿现象,不同于宏观尺度下,三相接触区的大小和形状不可略。有学者还原细化了“微观接触角”概念,文献中已有理论可归纳为:“液分子密度均匀理论[39]”、“ 界面层内外密度分别均匀理论[40]”和“自由能的准匀液膜理论等[41,42]”。本文综合了考虑不同接触角影响,简化处理设置其为常。
【参考文献】:
期刊论文
[1]T型毛细管中气液两相流型及Taylor流的数值模拟[J]. 黄乐平,张莹,孙金丛,周敏. 南昌大学学报(工科版). 2016(02)
[2]微化工:开启高效精益生产新模式[J]. 孟晶,许春华. 中国橡胶. 2015(21)
[3]双重乳液液滴在剪切流场中变形的数值模拟[J]. 左炀,魏文韫,余徽,漆小波. 化学工程. 2015(05)
[4]多相/多组分LBM模型及其在微流体领域的应用[J]. 付宇航,赵述芳,王文坦,金涌,程易. 化工学报. 2014(07)
[5]双T型微通道内气液液三相分散规律[J]. 王凯,吕阳成,秦康,骆广生. 化工学报. 2013(02)
[6]T型微通道内气液两相流数值模拟[J]. 王琳琳,李国君,田辉,叶阳辉. 西安交通大学学报. 2011(09)
[7]T形微通道结构中的流体混合规律[J]. 吴玮,王丽军,李希. 化工学报. 2011(05)
[8]接触角测量技术的最新进展[J]. 丁晓峰,管蓉,陈沛智. 理化检验(物理分册). 2008(02)
[9]微化工技术研究进展[J]. 陈光文. 现代化工. 2007(10)
[10]化学机械系统的微小化与节能[J]. 涂善东,周帼彦,于新海. 化工进展. 2007(02)
硕士论文
[1]微通道中液液两相流动与混合过程的数值模拟[D]. 王佳男.浙江大学 2013
[2]垂直入口微通道内气液两相流模拟研究[D]. 赵楠.北京交通大学 2010
[3]水平和倾斜管道中气液两相流流型的在线识别及数据采集研究[D]. 党民.西南石油学院 2004
本文编号:3389815
【文章来源】:郑州大学河南省 211工程院校
【文章页数】:94 页
【学位级别】:硕士
【部分图文】:
图2.1两相流常见流型
2Lf Lp pL Lφ Δ Δ = ylor 气泡长度研究长度是泰勒流的重要参数,微通道中弹状流传热、传质、压降弹长度的大小。而气弹长度并不像其他流动参数如流体性质,可设置,因此很难精确控制。现有的研究中研究者得出的关于公式也存在着明显的不一致性,图 2.4 中 LB 代表气泡长度,。
a)润湿 (b)不润湿图 2.6 接触角示意图接触角一般用θ表示。变化范围通常在0 180 之间,两端极限分别代表了面与液体之间完全润湿和完全不润湿两个状态。Thomas Young 提出了关于平接触角的理论,相关的 Young 方程仍是目前固液接触角计算的经典方程,如式 2.5,cos( )SG SL LGθ = σ σ σ(2.5中,SGσ、SLσ、LGσ分别表示气液、气固、液固界面的表面张力。微纳流体的润湿现象,不同于宏观尺度下,三相接触区的大小和形状不可略。有学者还原细化了“微观接触角”概念,文献中已有理论可归纳为:“液分子密度均匀理论[39]”、“ 界面层内外密度分别均匀理论[40]”和“自由能的准匀液膜理论等[41,42]”。本文综合了考虑不同接触角影响,简化处理设置其为常。
【参考文献】:
期刊论文
[1]T型毛细管中气液两相流型及Taylor流的数值模拟[J]. 黄乐平,张莹,孙金丛,周敏. 南昌大学学报(工科版). 2016(02)
[2]微化工:开启高效精益生产新模式[J]. 孟晶,许春华. 中国橡胶. 2015(21)
[3]双重乳液液滴在剪切流场中变形的数值模拟[J]. 左炀,魏文韫,余徽,漆小波. 化学工程. 2015(05)
[4]多相/多组分LBM模型及其在微流体领域的应用[J]. 付宇航,赵述芳,王文坦,金涌,程易. 化工学报. 2014(07)
[5]双T型微通道内气液液三相分散规律[J]. 王凯,吕阳成,秦康,骆广生. 化工学报. 2013(02)
[6]T型微通道内气液两相流数值模拟[J]. 王琳琳,李国君,田辉,叶阳辉. 西安交通大学学报. 2011(09)
[7]T形微通道结构中的流体混合规律[J]. 吴玮,王丽军,李希. 化工学报. 2011(05)
[8]接触角测量技术的最新进展[J]. 丁晓峰,管蓉,陈沛智. 理化检验(物理分册). 2008(02)
[9]微化工技术研究进展[J]. 陈光文. 现代化工. 2007(10)
[10]化学机械系统的微小化与节能[J]. 涂善东,周帼彦,于新海. 化工进展. 2007(02)
硕士论文
[1]微通道中液液两相流动与混合过程的数值模拟[D]. 王佳男.浙江大学 2013
[2]垂直入口微通道内气液两相流模拟研究[D]. 赵楠.北京交通大学 2010
[3]水平和倾斜管道中气液两相流流型的在线识别及数据采集研究[D]. 党民.西南石油学院 2004
本文编号:3389815
本文链接:https://www.wllwen.com/kejilunwen/lxlw/3389815.html