生物炭与有机物料配施对砂姜黑土团聚体理化特征的影响
本文选题:生物炭 切入点:砂姜黑土 出处:《河南农业大学》2015年硕士论文
【摘要】:本研究采用室内培养试验,以砂姜黑土为供试土壤,设6个处理,分别为不添加任何物料的对照(CK)、添加1.5%的秸秆(S)、添加2.3%的鸡粪有机肥(M)、添加5%的生物炭(B)、添加5%的生物炭+1.5%的秸秆(BS)和添加5%的生物炭+2.3%的鸡粪有机肥(BM),研究生物炭与秸秆、有机肥配施对砂姜黑土土壤肥力、团聚体特征和微生物性状的影响,并揭示砂姜黑土土壤团聚体与有机碳形成的内在机理,为指导砂姜黑土改良提供理论与实践依据。主要研究结果如下:1.不同物料施用对土壤水稳性团聚体形成的影响不同。培养12个月,与对照比较,B处理没有影响土壤各粒级团聚体分布,S处理1 mm粒级团聚体显著提高,M处理0.25-1 mm粒级团聚体显著提高,BS和BM配施处理0.053-0.25 mm粒级含量显著降低。另外,从各物料处理土壤大小粒级团聚体含量随时间序列变化看,S处理和BS处理土壤小团聚体逐渐增多;BM处理随时间延长大团聚体增多。2.不同物料的施用均显著提高了砂姜黑土土壤有机碳及各粒级团聚体有机碳含量,其中土壤有机碳含量以BS处理最高,但添加生物炭的各处理之间差异不显著。S处理和M处理,土壤粒级有机碳含量随粒级增大而增大,添加生物炭各处理随粒级增大有机碳含量呈V型变化趋势。B处理以及BM处理能显著提高0.25 mm砂姜黑土大团聚体有机碳含量,BS处理能显著提高0.25 mm粒级团聚体有机碳含量。与此同时,施用各物料处理土壤0.5-1 mm粒级有机碳贡献率显著提高,0.053-0.25 mm粒级团聚体有机碳贡献率降低。3.培养时间和不同物料添加对土壤团聚体稳定性均有较大影响。随培养时间延长,不同处理土壤稳定性有降低趋势。培养12个月,各物料处理土壤平均重量直径(MWD)、几何平均直径(GMD)值显著提高,MWD以BM处理最高,GMD以S处理最高。4.对各处理土壤分形维数分析显示,随培养时间的延长,S、B、BS和BM四个处理土壤分形维数有增大的趋势,而M处理有减小的趋势。培养12个月,M处理BM处理土壤分形维数降低,添加秸秆处理的土壤分形维数提高。5.不同物料施用均有利于土壤微生物数量和微生物生物量的提高。与对照相比,细菌数量和微生物量生物碳含量以BM处理提高最多,真菌数量以S处理提高最多,放线菌数量以BM处理提高最多,微生物量生物氮含量以M处理提高最多。6.培养时间和不同物料施用对土壤pH均有不同程度的影响。随时间延长,与原始土壤比较,CK处理土壤pH呈降低趋势;S和M处理的土壤pH呈先升高后逐渐降低并低于原始土壤,添加生物炭各处理呈先升高后随时间推移趋于稳定,但仍高于原始土壤。培养12个月后,除S处理外,其余各物料处理土壤pH与对照土壤相比均显著提高,以BM处理最高。7.不同物料施用下,随培养时间延长,各物料处理土壤碱解氮含量提高,土壤速效钾先升高后趋于稳定,且高于原始土壤,而土壤速效磷含量除M和BM处理先升高后降低趋于稳定且高于原始土壤外,其余处理均降低且低于原始土壤。培养12个月,各有机物料处理土壤速效养分含量显著提高,碱解氮含量和速效磷含量均以BM处理提高最多,速效钾含量以BS处理提高最多。8.相关分析表明,土壤微生物量生物碳含量与土壤有机碳和碱解氮含量之间达极显著正相关,土壤微生物量生物氮含量与土壤有机碳和碱解氮含量之间达显著正相关。综上所述,在12个月周期的室内培养试验中,生物炭与秸秆配施在培养前期有利于土有利于大团聚体含量和土壤团聚体稳定性的提高,降低土壤分形维数,提升土壤碳水平;生物炭与有机肥配施有利于土壤pH提升、后期有利于大团聚体的形成和微生物活性的提高,降低土壤分形维数,提升土壤碳水平。
[Abstract]:The research in the laboratory, in Shajiang black soil as tested soil, 6 treatments were as control without any material (CK), adding 1.5% straw (S), chicken manure organic fertilizer added 2.3% (M), biochar added 5% (B), BAC + 1.5% add 5% of the straw (BS) chicken manure organic fertilizer with 5% and biological carbon +2.3% (BM), the research of biochar and straw, organic fertilizer on soil fertility of Shajiang black soil, characteristics and microbial properties of aggregates, and reveal the Shajiang black soil aggregates and organic carbon in the formation of mechanism. To provide theoretical and practical basis for the guidance of Shajiang Black Soil improvement. The main results are as follows: 1. different materials with different effects on soil water stable aggregates. For 12 months, compared with control, B treatment did not affect the soil aggregate distribution at S 1 mm aggregates increased significantly, M 0 .25-1 mm aggregates increased significantly, BS and BM fertilizer 0.053-0.25 mm particle content was significantly reduced. In addition, from the material treatment soil particle size aggregates content with time sequence changes, S treatment and BS treatment of soil aggregates increased gradually with time prolonging; BM treatment increased.2. aggregates of different material application significantly increased Shajiang Black Soil Organic carbon and various aggregates organic carbon content, the soil organic carbon content in BS treatment was the highest, but the treatment of biochar there was no significant difference between.S treatment and M treatment, soil particle organic carbon content increases with the particle size increasing, biochar treatments with the size increase of organic carbon content is V trend in.B treatment and BM treatment can significantly improve the black soil organic carbon in aggregates content 0.25 mm sand, BS treatment can significantly improve the 0.25 mm aggregates with machine Carbon content. At the same time, the application of the material treatment soil 0.5-1 mm fraction organic carbon contribution rate increased significantly, 0.053-0.25 mm aggregates organic carbon contribution rate and reduce the culture time of.3. and different material addition on the stability of soil aggregates have a greater impact. With the prolongation of the culture time, different treatments of soil stability decreased. For 12 months, the mean weight diameter of soil material treatment (MWD), geometric mean diameter (GMD) was significantly increased, MWD to BM the highest GMD to the highest S.4. on the soil fractal dimension analysis showed that prolonged incubation time, with S, B, BS and BM four soil fractal dimension increased the trend, while M decreased. After 12 months, M BM reduced the soil fractal dimension, the fractal dimension of soil added straw treatment increased.5. application of different materials were beneficial to soil microorganisms And microbial biomass increased. Compared with the control, the number of bacteria and microbial biomass carbon content in BM increased the most, the number of fungi in S increased the most, the number of actinomycetes increased most in BM treatment, microbial biomass nitrogen content in M increased the influence of most.6. culture application time and different material in different degrees the soil pH was. With the time prolonging, compared with the original soil, CK soil pH decreased S and M; the soil pH increased first and then decreased and lower than that of the original soil. Biochar treatments were first increased and then tended to be stable over time, but still higher than the original soil cultivation of 12. After a month, except for S treatment, the rest of the material treatment of soil pH was significantly increased compared with the control soil, the highest.7. of different materials application with BM, with the prolongation of the culture time, the material treatment of soil nitrogen content increased, The soil available potassium increased firstly and then tends to be stable, and is higher than the original soil, and soil available phosphorus content in M and BM increased first and then decreased and stabilized soil is higher than that of the original, the other treatment were lower and lower than that of the original soil. For 12 months, the organic material treatment significantly increased the content of soil available nutrients, nitrogen the content and the content of available phosphorus in BM treatment was higher than the content of available potassium in the treatment of BS with up to.8. correlation analysis showed that soil microbial biomass carbon content and soil organic carbon and nitrogen content were significantly positive correlation between soil microbial biomass, nitrogen content and soil organic carbon and nitrogen content a significant positive correlation. In summary, in the 12 months period of incubation experiments, biological activated carbon and straw fertilizer in the cultivation period was beneficial to soil in favor of large aggregates and soil aggregate stability. The soil fractal dimension and the level of soil carbon increased. The combination of biochar and organic manure increased the pH of soil. Later, it was beneficial for the formation of large aggregates and the improvement of microbial activity, the reduction of soil fractal dimension and the increase of soil carbon level.
【学位授予单位】:河南农业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:S158
【相似文献】
相关期刊论文 前10条
1 唐益群;张晓晖;佘恬钰;杨坪;王建秀;;贵州石漠化地区棕黄色粘性土团聚体稳定性研究[J];工程地质学报;2009年06期
2 刘玮;蒋先军;;耕作方式对土壤不同粒径团聚体氮素矿化的影响[J];土壤;2013年03期
3 江耀宗;水和离子在不同粒径团聚体的土柱中的移动[J];核农学报;1990年01期
4 J·S·C·Mbagwu;袁剑舫;;耕作措施对土壤团聚体性质的影响[J];土壤学进展;1991年01期
5 L.J.Hagen,E.L.Skidmore,刘正杰;风蚀—团聚体磨蚀系数的预测[J];水土保持科技情报;1994年03期
6 侯春霞,骆东奇,谢德体,魏朝富,朱波;不同利用方式对紫色土团聚体形成的影响[J];西南农业大学学报(自然科学版);2003年05期
7 孙天聪,李世清,邵明安;长期施肥对褐土有机碳和氮素在团聚体中分布的影响[J];中国农业科学;2005年09期
8 苏永中;王芳;张智慧;杜明武;;河西走廊中段边缘绿洲农田土壤性状与团聚体特征[J];中国农业科学;2007年04期
9 张琪;方海兰;史志华;李朝霞;蔡崇法;;侵蚀条件下土壤性质对团聚体稳定性影响的研究进展[J];林业科学;2007年S1期
10 汪景宽;冷延慧;于树;李双异;陈丽芳;;不同施肥处理下棕壤有机碳库对团聚体稳定性的影响[J];土壤通报;2009年01期
相关会议论文 前10条
1 陈辉;窦森;;长期施用玉米秸杆对黑土团聚体中腐殖质组成和性质的影响[A];土壤资源持续利用和生态环境安全——中国土壤学会第十一届二次理事扩大会议暨学术会议论文集[C];2009年
2 关松;窦森;;培养条件下土壤腐殖质在黑土团聚体中的分布[A];土壤资源持续利用和生态环境安全——中国土壤学会第十一届二次理事扩大会议暨学术会议论文集[C];2009年
3 窦森;郝翔翔;;黑土团聚体与颗粒中腐殖质组成的比较[A];面向未来的土壤科学(上册)——中国土壤学会第十二次全国会员代表大会暨第九届海峡两岸土壤肥料学术交流研讨会论文集[C];2012年
4 胡乐宁;苏以荣;何寻阳;;桂西北喀斯特典型土壤的团聚体分级特征[A];农业环境与生态安全——第五届全国农业环境科学学术研讨会论文集[C];2013年
5 于伟伟;王郦睿;张东亮;寇太记;苗艳芳;;臭氧污染对土壤物理结构与团聚体形成的影响[A];2013中国环境科学学会学术年会论文集(第四卷)[C];2013年
6 史奕;鲁彩艳;陈欣;;不同利用方式下黑土团聚体水稳定性与有机质关系[A];中国地壤学会第十次全国会员代表大会暨第五届海峡两岸土壤肥料学术交流研讨会文集(面向农业与环境的土壤科学专题篇)[C];2004年
7 刘彩霞;黄为一;;耐盐碱细菌筛选及对盐碱土团聚体形成和土壤活性的影响[A];中国土壤学会第十一届全国会员代表大会暨第七届海峡两岸土壤肥料学术交流研讨会论文集(中)[C];2008年
8 郝翔翔;窦森;;不同土地利用方式下黑土团聚体及其腐殖质数量特征[A];土壤资源持续利用和生态环境安全——中国土壤学会第十一届二次理事扩大会议暨学术会议论文集[C];2009年
9 史奕;陈欣;宋玉芳;沈善敏;;黑土轻组分C的积累分布变化及其与团聚体水稳性的关系[A];中国土地资源态势与持续利用研究[C];2004年
10 李凯;窦森;;施肥对土壤不同粒级团聚体中胡敏素数量和红外光谱的影响[A];土壤资源持续利用和生态环境安全——中国土壤学会第十一届二次理事扩大会议暨学术会议论文集[C];2009年
相关硕士学位论文 前10条
1 黄金花;秸秆还田对长期连作棉田土壤团聚体结构及有机碳稳定性的影响[D];石河子大学;2015年
2 薛彦飞;不同土壤管理措施对X土团聚体胶结剂的影响[D];西北农林科技大学;2015年
3 刘冬;不同侵蚀度红壤团聚体中粘粒矿物分布特征及其对团聚体稳定性的影响[D];华中农业大学;2007年
4 许晨阳;土壤电场对粘土矿物团聚体稳定性的影响[D];西南大学;2013年
5 李婕;不同土壤管理措施对X土团聚体碳、氮分布及碳矿化的影响[D];西北农林科技大学;2013年
6 刘振东;粪肥配施化肥对华北褐土团聚体稳定性及养分含量的影响[D];中国农业科学院;2013年
7 杜介方;施肥对土壤团聚体分布及其中球囊霉素的影响[D];大连交通大学;2010年
8 郑晓萍;表征富铁土土壤侵蚀的团聚体稳定性及其物理学机制研究[D];浙江大学;2002年
9 陈晓侠;东北黑土团聚体的结构特征研究[D];中国科学院研究生院(东北地理与农业生态研究所);2013年
10 陈升龙;黑土团聚体的孔隙结构特征与有机碳矿化的关系研究[D];中国科学院研究生院(东北地理与农业生态研究所);2015年
,本文编号:1718297
本文链接:https://www.wllwen.com/kejilunwen/nykj/1718297.html