当前位置:主页 > 科技论文 > 农业技术论文 >

基于多分辨率遥感数据与随机森林算法的土壤有机质预测研究

发布时间:2018-05-06 16:45

  本文选题:多分辨率遥感数据 + 随机森林 ; 参考:《土壤学报》2016年02期


【摘要】:遥感数据已经在数字土壤制图中得到广泛应用,并且可以一定程度上提高土壤属性预测的精度。本文以榆阳区的黄土丘陵和风沙滩地两种地貌区为例,利用不同分辨率的专题制图仪(thematic mapper,TM)、先进宽视场传感器(advanced wide field sensor,AWIFS)和中等分辨率成像仪(Moderate resolution imaging spectroradiometer,MODIS)的遥感影像数据(分辨率分别为30 m、56 m和250 m)和基于高级热量散射和反射辐射仪全球数字高程模型(advanced spaceborne thermal emission and reflection radiometer global digital elevation model,ASTER GDEM)的地形衍生数据,结合其他影响土壤有机质分布的辅助因子,用随机森林算法(random forest,RF)对表层土壤有机质进行模拟预测,并通过实测数据的百分比抽样对预测结果进行了验证。结果表明,在榆阳区的黄土丘陵区,基于TM数据的土壤有机质预测结果较好;在风沙滩地区,基于AWIFS数据的土壤有机质预测结果较好。基于RF的土壤有机质预测在榆阳区的黄土丘陵区结果较好,三个分辨率下的平均绝对误差在1.27~1.57 g kg-1之间,在风沙滩地区预测精度较低,平均绝对误差在1.46~2.08 g kg-1之间。高程、地理位置和植被是影响黄土丘陵区土壤有机质预测的主要因素,在风沙滩地区,植被、高程和离水源地的距离是影响有机质预测的主要因素。可见,在地貌相对简单的地区进行土壤有机质含量的预测时可以使用较低分辨率的数据代替较高分辨率的数据,同时,RF算法在复杂地貌区的土壤有机质预测更有效。
[Abstract]:Remote sensing data have been widely used in digital soil mapping and can improve the precision of soil attribute prediction to some extent. In this paper, the loess hilly and wind-sand beach areas in Yuyang district are taken as examples. Using thematic cartography with different resolutions, advanced wide field sensor AWIFSs and moderate resolution imaging spectroradiorometerMODIS-based remote sensing image data (resolutions of 30mmt and 250m, respectively) and based on advanced thermal scattering (AHRS), advanced wide-field sensor (AWAF) and moderate resolution imaging spectroadior (MODISs) are used in this paper. Topographic derived data of advanced spaceborne thermal emission and reflection radiometer global digital elevation model (ASTER GDEM). Combined with other auxiliary factors which affect the distribution of soil organic matter, the random forest algorithm random forestfr is used to simulate and predict the surface soil organic matter, and the predicted results are verified by percentage sampling of measured data. The results show that the prediction results of soil organic matter based on TM data are better in the loess hilly area of Yuyang area, and the results of soil organic matter prediction based on AWIFS data are better in wind-beach area. The results of soil organic matter prediction based on RF are better in the loess hilly area of Yuyang area. The average absolute error is between 1.27 and 1.57 g kg-1 under three resolutions, and the average absolute error is between 1.46 and 2.08 g kg-1 in wind-beach area. Height, geographical location and vegetation are the main factors that affect the prediction of soil organic matter in loess hilly region. In wind-sand area, vegetation, height and distance from water source are the main factors that influence the prediction of organic matter. It can be seen that the lower resolution data can be used instead of the higher resolution data in the prediction of soil organic matter content in areas with relatively simple geomorphology, and the RF algorithm is more effective in predicting soil organic matter in complex geomorphological areas.
【作者单位】: 西北农林科技大学资源环境学院;农业部西北植物营养与农业环境重点实验室;
【基金】:国家科技基础性工作专项项目(2014FY110200A08)资助~~
【分类号】:S153.621

【相似文献】

相关期刊论文 前10条

1 张雷;王琳琳;张旭东;刘世荣;孙鹏森;王同立;;随机森林算法基本思想及其在生态学中的应用——以云南松分布模拟为例[J];生态学报;2014年03期

2 李旭青;刘湘南;刘美玲;吴伶;;水稻冠层氮素含量光谱反演的随机森林算法及区域应用[J];遥感学报;2014年04期

3 王盼;陆宝宏;张瀚文;张巍;孙银凤;季妤;;基于随机森林模型的需水预测模型及其应用[J];水资源保护;2014年01期

4 王栋;岳彩荣;田传召;范怀刚;王跃辉;;基于随机森林的大姚县TM遥感影像分类研究[J];林业调查规划;2014年02期

5 刘毅;杜培军;郑辉;夏俊士;柳思聪;;基于随机森林的国产小卫星遥感影像分类研究[J];测绘科学;2012年04期

6 吕淑婷;张启敏;;一类带Poisson跳的随机森林发展系统数值解的收敛性[J];宁夏大学学报(自然科学版);2010年04期

7 李治;杨晓梅;孟樊;范文义;;物候特征辅助下的随机森林宏观尺度土地覆盖分类方法研究[J];遥感信息;2013年06期

8 金宇;周可新;方颖;刘欣;;基于随机森林模型预估气候变化对动物物种潜在生境的影响[J];生态与农村环境学报;2014年04期

9 马明;岳彩荣;张云飞;李小婷;张博;;基于TM影像的土地覆盖分类比较研究[J];绿色科技;2014年03期

10 ;[J];;年期

相关会议论文 前7条

1 谢程利;王金桥;卢汉清;;核森林及其在目标检测中的应用[A];第六届和谐人机环境联合学术会议(HHME2010)、第19届全国多媒体学术会议(NCMT2010)、第6届全国人机交互学术会议(CHCI2010)、第5届全国普适计算学术会议(PCC2010)论文集[C];2010年

2 武晓岩;方庆伟;;基因表达数据分析的随机森林方法及算法改进[A];黑龙江省第十次统计科学讨论会论文集[C];2008年

3 张天龙;梁龙;王康;李华;;随机森林结合激光诱导击穿光谱技术用于的钢铁分类[A];中国化学会第29届学术年会摘要集——第19分会:化学信息学与化学计量学[C];2014年

4 相玉红;张卓勇;;组蛋白去乙酰化酶抑制剂的构效关系研究[A];第十一届全国计算(机)化学学术会议论文摘要集[C];2011年

5 张涛;李贞子;武晓岩;李康;;随机森林回归分析方法及在代谢组学中的应用[A];2011年中国卫生统计学年会会议论文集[C];2011年

6 冯飞翔;冯辅周;江鹏程;刘菁;刘建敏;;随机森林和k-近邻法在某型坦克变速箱状态识别中的应用[A];第八届全国转子动力学学术讨论会论文集[C];2008年

7 曹东升;许青松;梁逸曾;陈宪;李洪东;;组合树的集合体和后向消除策略去分类P-糖蛋白化合物[A];第十届全国计算(机)化学学术会议论文摘要集[C];2009年

相关博士学位论文 前4条

1 曹正凤;随机森林算法优化研究[D];首都经济贸易大学;2014年

2 雷震;随机森林及其在遥感影像处理中应用研究[D];上海交通大学;2012年

3 岳明;基于随机森林和规则集成法的酒类市场预测与发展战略[D];天津大学;2008年

4 李书艳;单点氨基酸多态性与疾病相关关系的预测及其机制研究[D];兰州大学;2010年

相关硕士学位论文 前10条

1 钱维;药品不良反应监测中随机森林方法的建立与实现[D];第二军医大学;2012年

2 韩燕龙;基于随机森林的指数化投资组合构建研究[D];华南理工大学;2015年

3 贺捷;随机森林在文本分类中的应用[D];华南理工大学;2015年

4 张文婷;交通环境下基于改进霍夫森林的目标检测与跟踪[D];华南理工大学;2015年

5 李强;基于多视角特征融合与随机森林的蛋白质结晶预测[D];南京理工大学;2015年

6 朱玟谦;一种收敛性随机森林在人脸检测中的应用研究[D];武汉理工大学;2015年

7 肖宇;基于序列图像的手势检测与识别算法研究[D];电子科技大学;2014年

8 李慧;一种改进的随机森林并行分类方法在运营商大数据的应用[D];电子科技大学;2015年

9 赵亚红;面向多类标分类的随机森林算法研究[D];哈尔滨工业大学;2014年

10 黎成;基于随机森林和ReliefF的致病SNP识别方法[D];西安电子科技大学;2014年



本文编号:1853080

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/nykj/1853080.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户f2a9a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com