模拟径流条件下坡长对工程堆积体坡面土壤侵蚀的影响
本文选题:工程堆积体 + 细沟形态 ; 参考:《西北农林科技大学》2017年硕士论文
【摘要】:生产建设项目挖填不平衡产生的工程堆积体已成为近20年来新增人为水土流失的主要泥沙策源地。根据“因害设防,生态优先”的原则,在工程堆积体坡面布设合理的防治措施以提高坡面的水土保持功能,进而改善生态环境,为对黄土区工程堆积体坡面防治措施进行最优化配置,使坡面防护措施发挥最大效益。本文以坡长为研究对象,就坡长对工程堆积体坡面土壤侵蚀的影响进行研究,在野外对模拟工程堆积体径流小区进行径流冲刷试验,设置5个坡长、3个坡度来探讨坡长对工程堆积体坡面土壤侵蚀的影响。得出主要结论如下:(1)工程堆积体坡面产流率随放水时间持续呈现波动性增大,随着坡长增大,产沙率波动振幅也变大。径流含沙量随着放水时间的持续呈现先减小而后保持稳定变化,随着坡长增大,含沙量呈递增变化。工程堆积体坡面累积产流量随放水时间的变化可以用线性函数表达,累积产沙量与放水时间呈极显著幂函数关系,累积产沙量和累积产流量均随着坡长的增大呈现递增变化。试验坡度、坡长均对坡面累积产流产沙量具有重要的影响,坡长对坡面累积产流产沙的影响大于坡度,坡长对累积产流产沙量产生正效应,坡度对累积产流产沙量产生负效应。(2)细沟沟宽和沟深均随放水时间的持续呈现增大变化,沟宽随放水时间的变化可以很好地用对数函数进行描述,沟宽随坡长的增大呈现递增变化,沟深随放水时间的变化可用线性函数很好地描述。细沟宽深比均随着放水时间的持续呈现先减小后逐渐稳定的变化,细沟断面积随冲刷历时的持续呈现不断增大的趋势,断面积随放水时间的变化可以很好地用线性方程进行描述。不同坡度、坡长条件下,沟宽的沿程分布情况并不一致,呈现多样性;在小坡长情况下,沟深的波动性较大,整体上来看,沟深均随着坡面沿程向下呈现逐渐递减并趋于稳定的分布规律。(3)流速随着放水时间的持续呈现先减小后逐渐趋于稳定,坡面水流流速与时间之间的关系可以很好地用对数函数进行描述。雷诺数随着时间的持续呈先增大后减小的趋势,随着坡长增加而减小,雷诺数随放水时间的变化可以很好地用二次函数关系进行描述,二次函数开口向下,表明雷诺数在试验过程中存在最大值。佛汝德数随着放水时间的持续呈现先骤降后趋于稳定的变化,这表明坡面径流流态在不断地向缓流发展。坡面阻力系数随着时间的增大呈现不断增大的趋势,阻力系数总体介于0.017~12.14,随着坡长增大而增大,佛汝德数、阻力系数与时间的关系均可以很好地用幂函数进行描述。(4)土壤剥蚀率与水流剪切力和水流功率均存在显著的线性函数,对应的土壤可蚀性参数为3.5×10-3s/m,临界水流剪切力为5.57Pa,剥蚀率与水流剪切力的拟合效果最好。(5)含沙量与坡长存在良好的对数函数关系,累积产流量与坡长的关系可以很好地用幂函数进行描述,累积产沙量与坡长存在二次函数关系。细沟形态指标沟深与坡长并不存在显著的函数关系,细沟沟宽与坡长存在显著的二次函数关系。流速与坡长存在显著的线性函数关系,佛汝德数、阻力系数、粗糙系数、水流挟沙力与坡长均存在显著的指数函数关系。
[Abstract]:In the past 20 years, the accumulation of Engineering accumulation has become the main sediment source of artificial soil erosion in the construction projects. According to the principle of "fortification and ecological priority", reasonable prevention and control measures are set up on the slope surface of the project in order to improve the soil and water conservation function of the slope and to improve the ecological environment. In this paper, the slope length is the research object, the influence of slope length on the soil erosion of the slope surface of the engineering accumulation body is studied in this paper. The runoff scour test of the runoff plot in the simulated engineering accumulation body is carried out in the field, and 5 slope lengths and 3 slopes are set up in the field. The main conclusions are as follows: (1) the flow rate of the slope surface of the engineering accumulating body increases with the water release time, and the fluctuation amplitude of sediment yield increases with the increase of the slope length. The cumulative yield of the slope on the slope of the engineering accumulation can be expressed with linear function with the change of the time of water release. The cumulative sediment yield and the discharge time have a very significant power function relationship. The cumulative sediment yield and the cumulative yield are all increasing with the increase of the slope length. The slope and the length of the slope are all accumulated on the slope surface. The effect of the sediment yield on the sediment yield is more important than that of the slope. The slope length has a positive effect on the cumulative yield and sediment yield, and the slope has a negative effect on the cumulative runoff and sediment. (2) the width of the trench groove and the depth of the ditch vary with the duration of the water release, and the width of the ditch can be used well with the change of the water release time. The logarithmic function is described with the increase of the width of the ditch with the increase of the length of the slope. The depth of the ditch is well described with the linear function. The width to depth ratio of the rill is gradually reduced with the continuous presentation of the water release time. The variation of water time can be well described by linear equation. Under the condition of different slope and length, the distribution of groove width is different and presents diversity. In the case of small slope length, the depth of the ditch has a large fluctuation. On the whole, the depth of the ditch shows a gradual decreasing and stable distribution along the slope along the slope. (3) flow The relation between the flow velocity and the time can be described well with the logarithmic function. The number of Reynolds number increases first and then decreases with the time, which decreases with the increase of the slope length, and the Reynolds number can be used two times with the change of the water release time. The function relation is described, and the two function opening downward indicates that the Reynolds number has the maximum value during the experiment. The resistance coefficient is generally in 0.017~12.14, with the increase of the slope length. The relationship between the Froude number, the resistance coefficient and the time can be well described with power function. (4) there is a significant linear function between the soil erosion rate and the flow shear force and the flow power, and the corresponding soil erodibility parameters are 3.5 * 10-3s/m, and the critical flow shear is cut. Force of 5.57Pa, the best fitting effect of the erosion rate and the flow shear force is best. (5) there is a good logarithmic function relationship between the sediment content and the slope length. The relationship between the cumulative yield and the slope length can be well described with the power function, and the cumulative sediment yield and the slope length have two functional relationships. The trench shape index does not have a significant function in the depth of the ditch and the slope length. There is a significant two function relationship between the width of the rill ditch and the length of the slope. There is a significant linear function relationship between the velocity and the slope length, and there is a significant exponential function relationship between the Froude number, the drag coefficient, the roughness coefficient, the sediment carrying capacity and the slope length.
【学位授予单位】:西北农林科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S157.1
【相似文献】
相关期刊论文 前10条
1 秦伟;朱清科;张岩;;通用土壤流失方程中的坡长因子研究进展[J];中国水土保持科学;2010年02期
2 王程;陈正江;杨勤科;曹佳云;丑述仁;;流域分布式坡长不确定性的初步分析[J];水土保持研究;2012年02期
3 张宏鸣;杨勤科;李锐;刘晴蕊;;流域分布式侵蚀学坡长的估算方法研究[J];水利学报;2012年04期
4 罗辉;巫儒俊;;林区公路限制坡长的确定[J];林业科技;1991年03期
5 C.K.Mutchler ,J·D·Greer ,车桂萍;坡长对缓坡侵蚀的影响[J];水土保持科技情报;1982年04期
6 张信宝,文安邦,奎因TA,沃林DE;黄土峁坡农地侵蚀与坡长的关系[J];中国水土保持;1998年01期
7 R.Lal ,姚云峰;坡长与坡度对水土流失的影响[J];水土保持科技情报;1991年04期
8 付兴涛;张丽萍;叶碎高;王小云;吴希媛;张迅;;经济林地坡长对侵蚀产流动态过程影响的模拟试验研究[J];水土保持学报;2009年05期
9 刘和平;王秀颖;刘宝元;;短坡条件下侵蚀产沙与坡长的关系[J];水土保持学报;2011年02期
10 孔亚平;张科利;曹龙熹;;土壤侵蚀研究中的坡长因子评价问题[J];水土保持研究;2008年04期
相关会议论文 前1条
1 路宾朋;陈兴伟;;基于坡长修正的晋江西溪流域产流产沙模拟[A];农业、生态水安全及寒区水科学——第八届中国水论坛摘要集[C];2010年
相关博士学位论文 前3条
1 张宏鸣;流域分布式土壤侵蚀学坡长提取与分析[D];西北农林科技大学;2012年
2 郭伟玲;坡度和坡长尺度效应与尺度变换研究[D];中国科学院研究生院(教育部水土保持与生态环境研究中心);2012年
3 付兴涛;坡面径流侵蚀产沙及动力学过程的坡长效应研究[D];浙江大学;2012年
相关硕士学位论文 前9条
1 郭晓朦;不同坡长扰动地表下紫色土坡面土壤理化性质的时空分布特征[D];西南大学;2016年
2 兰敏;坡长提取数据单元研究[D];西北农林科技大学;2012年
3 程峥;流域分布式侵蚀学坡长提取的影响因素研究[D];西北大学;2013年
4 贺小容;不同坡长条件下扰动地表对土壤养分流失的影响研究[D];西南大学;2014年
5 邓利强;黄土区工程堆积体水蚀特征及测算模型坡长因子试验研究[D];中国科学院研究生院(教育部水土保持与生态环境研究中心);2014年
6 李俊;基于GIS的小流域坡度坡长因子计算方法研究[D];西北农林科技大学;2011年
7 李俊;基于DEM的黄土高原坡长的自动提取和分析[D];西北大学;2007年
8 姚云;不同坡长条件下扰动地表对紫色土坡面土壤可蚀性的影响[D];西南大学;2014年
9 刘和平;坡长对土壤可蚀性K值测定的影响[D];北京师范大学;2008年
,本文编号:1861939
本文链接:https://www.wllwen.com/kejilunwen/nykj/1861939.html