当前位置:主页 > 科技论文 > 农业技术论文 >

墒情诊断模型的理论分析、综合评价和展望

发布时间:2018-05-12 12:41

  本文选题:降水量 + 土壤含水量 ; 参考:《生态学杂志》2017年12期


【摘要】:本文基于专栏论文的全部研究结果,对墒情诊断模型进行了理论分析、综合评价和展望,目的是建立更实用的墒情诊断模型。研究结果如下:(1)87个墒情监测点的降水量数据可以用就近气象站的降水量代替;(2)分别就87个墒情监测点所建立的6个独立模型和1个综合模型(分时段诊断和逐日诊断2类)的诊断合格率都达到75%以上;(3)综合模型优于6个独立模型的单独使用;(4)所有模型和参数都是按监测点建立和确定的,不存在下垫面因素的影响;(5)所有模型简单、使用3个独立变量(前期土壤含水量、时段降水量之和和2次监测之间的天数)、参数容易获得,只要有系列性的土壤含水量监测数据和对应的降水量(监测点降水量或就近气象站降水量)数据就可建模。
[Abstract]:Based on all the research results of the column paper, this paper makes a theoretical analysis, comprehensive evaluation and prospect of the moisture diagnosis model. The purpose of this paper is to establish a more practical diagnosis model of soil moisture. The results are as follows: 1) the precipitation data of 87 soil moisture monitoring points can be replaced by the precipitation of nearby weather stations.) six independent models and one comprehensive model for 87 soil moisture monitoring points have been established respectively. The qualified rate of diagnosis is more than 75%.) the integrated model is superior to the 6 independent models. (4) all the models and parameters are established and determined according to the monitoring points. All the models are simple, using three independent variables (soil moisture content in the previous period, the sum of precipitation in the period and the number of days between the two monitoring periods), and the parameters are easy to be obtained. As long as there are a series of soil moisture monitoring data and corresponding precipitation data (precipitation at monitoring point or nearby weather station) data can be modeled.
【作者单位】: 农业部环境保护科研监测所;北部湾环境演变与资源利用教育部重点实验室(广西师范学院)广西地表过程与智能模拟重点实验室(广西师范学院);
【基金】:中央级公益性科研院所基本科研业务费专项资金(农业部环境保护科研监测所)项目(2015-szjj-zhy) “中国农业科学院科技创新工程”(2016-cxgc-hyl) 天津市科技支撑计划(15ZCZDNC00700) 全国农业技术推广中心节水处项目(2016-hx-hyl-5)资助
【分类号】:S152.7


本文编号:1878659

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/nykj/1878659.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户f092a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com