有机蔬菜生长过程的物联网监测和预测模型及碳收支的估算
本文选题:系统动力学 + 无线传感技术 ; 参考:《浙江农林大学》2015年硕士论文
【摘要】:本文以4种有机蔬菜为研究对象,以系统动力学(SD)理论为基础,以vensimPLE软件为技术平台,建立有机蔬菜生长及碳收支估算模型。选取生菜(叶菜类)、黄瓜(瓜类)、番茄(茄果类)及长豇豆(豆类)4种蔬菜作为研究对象,对蔬菜田地表温湿度、土壤温湿度、光强及CO2浓度等环境因子进行实时监测,获得各类环境因子的日变化特征,并结合相关研究,对试验蔬菜田的固碳能力进行估算,并利用田间观测数据及田间档案记录的数据对模型进行一定的验证。主要的研究结果如下:(1)从蔬菜种植期间的固碳总量上来看,番茄(3436.11 kgCO2·hm-2)最多,长豇豆(3122.83kgCO2·hm-2)次之,生菜(2897.1 kgCO2·hm-2)最少。但番茄固碳总量虽多,土壤呼吸碳排放量也多。在蔬菜种植期间从蔬菜农田生态系统的碳收支量来看,黄瓜农田生态系统最后的固碳量(1668.87 kgCO2·hm-2)最多,豇豆次之(1647.43 kgCO2·hm-2),其次为番茄(1534.06 kgCO2·hm-2),生菜固碳量最少(326.97 kgCO2·hm-2)。(2)生菜、黄瓜、番茄及长豇豆的单位面积蔬菜日均固碳量分别为9.80 gCO2·m-2·d-1,23.39gCO2·m-2·d-1,18.56 gCO2·m-2·d-1,26.86 gCO2·m-2·d-1。从日均单位面积固碳量来看,豇豆的固碳能力最强,生菜的固碳能力最差。豇豆、黄瓜和番茄的固碳能力均高于高山草地(11.52 gCO2·m-2·d-1),低于绿洲C4植物玉米(38.47 gCO2·m-2·d-1)。(3)单叶面积从大到小依次为生菜(0.0256 m2)、黄瓜(0.0169 m2)、长豇豆(0.0113 m2)、番茄(0.0089 m2)。总体来看,总叶面积与固碳量呈现一定的相关关系,总叶面积较大的蔬菜,其固碳量较总叶面积小的蔬菜的固碳量大。(4)蔬菜的光合速率与固碳量呈正相关关系。光合速率最强的黄瓜,固碳量最大,长豇豆次之;生菜光合速率最弱,固碳量最小。(5)观测期间CO2浓度由于受白天蔬菜光合作用的影响,平均日变化总体呈现白天低夜间高的特点。对比PAR日变化曲线发现,CO2浓度下降起始时间与PAR起始时间基本一致,在PAR达到最高值后回升,与蔬菜光合作用日变化规律一致。从CO2浓度总量来看,黄瓜田CO2浓度总量最大,固碳能力最强的豇豆次之,生菜田CO2浓度总量最小,固碳能力也最弱。
[Abstract]:In this paper, four kinds of organic vegetables are taken as the research object, based on the theory of system dynamics and vensimPLE software, the model of organic vegetable growth and carbon budget estimation is established. Four kinds of vegetables, including lettuce (leaves and vegetables), cucumber (melon, tomato) and asparagus bean (legume), were selected as the research objects. The environmental factors such as surface temperature and humidity, soil temperature and humidity, light intensity and CO2 concentration in vegetable field were monitored in real time. The diurnal variation characteristics of various environmental factors were obtained, and the carbon sequestration capacity of the experimental vegetable field was estimated, and the model was verified by field observation data and field archival data. The main results were as follows: (1) in terms of total carbon sequestration during vegetable planting, tomato (3436.11 kgCO2 hm-2), cowpea (3122.83 kg CO2 hm-2) and lettuce (2897.1 kgCO2 hm-2) were the least. However, although the total carbon sequestration of tomato is more, soil respiration carbon emissions are also more. During vegetable cultivation, the last carbon sequestration of cucumber farmland ecosystem was 1668.87 kgCO2 hm-2), followed by cowpea 1647.43 kgCO2 hm-2a, tomato 1534.06 kgCO2 hm-2a, lettuce carbon sequestration minimum 326.97 kgCO2 hm-2. The average daily carbon sequestration of tomato and asparagus bean per unit area was 9.80 gCO2 m ~ (-2) d ~ (-1) and 23.39 g CO _ 2 m ~ (-2) d ~ (-1) 18.56 gCO2 m ~ (-2) d ~ (-1) 26.86 gCO2 m ~ (-2) 路d ~ (-1) 路d ~ (-1), respectively. The carbon sequestration capacity of cowpea was the strongest, and that of lettuce was the worst. The carbon sequestration ability of cowpea, cucumber and tomato were all higher than that of alpine grassland (11.52 gCO2 m-2 d-1C, 38.47 gCO2 m-2 d-1C. 3) the single leaf area of cowpea, cucumber and tomato were 0.0256 m2, 0.0169 m2, 0.0113 m2 and 0.0089 m ~ (2), respectively. In general, the total leaf area and carbon sequestration showed a certain correlation. The carbon sequestration rate of vegetables with larger total leaf area was larger than that of vegetables with smaller total leaf area. (4) the photosynthetic rate of vegetables had a positive correlation with carbon sequestration. The cucumber with the highest photosynthetic rate had the highest carbon sequestration, followed by asparagus bean, and the photosynthetic rate of lettuce was the weakest, and the carbon sequestration was the lowest. The CO2 concentration was affected by the photosynthesis of vegetables during the observation period. The average diurnal variation showed the characteristics of low daytime and high night. Comparing with the diurnal variation curve of PAR, it was found that the onset time of CO _ 2 concentration decrease was basically the same as that of PAR, and then rose when PAR reached the highest value, which was consistent with the daily variation of photosynthesis in vegetables. According to the total CO2 concentration, the total CO2 concentration in cucumber field was the largest, followed by cowpea, which had the strongest carbon sequestration ability. The total CO2 concentration in lettuce field was the smallest and the carbon sequestration capacity was the weakest.
【学位授予单位】:浙江农林大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:S63;S126
【相似文献】
相关期刊论文 前10条
1 肖慧娟;匡耀求;黄宁生;朱照宇;刘宇;唐金利;;工业化高速发展时期广州市的碳收支变化初步研究[J];生态环境;2006年06期
2 康斌;线薇薇;武云飞;;两种饵料条件下(鱼Y)的碳收支研究[J];海洋科学;2010年03期
3 王笑影;谢艳兵;贾庆宇;吕国红;李荣平;;辽宁省近50年森林碳收支定量评估(英文)[J];Meteorological and Environmental Research;2010年02期
4 ;北京市园林科研所“城市园林绿地系统碳收支量值研究”再受关注[J];园林科技;2013年01期
5 王笑影;谢艳兵;贾庆宇;吕国红;李荣平;;辽宁省近50年森林碳收支定量评估[J];安徽农业科学;2010年08期
6 张雷明;于贵瑞;孙晓敏;温学发;任传友;宋霞;刘允芬;关德新;闫俊华;张一平;;中国东部森林样带典型生态系统碳收支的季节变化[J];中国科学.D辑:地球科学;2006年S1期
7 杨宏玉;涂建军;杨乐;高红丽;;土地利用变化对碳收支平衡的影响研究——以重庆市为例[J];农机化研究;2011年10期
8 于贵瑞;方华军;伏玉玲;王秋凤;;区域尺度陆地生态系统碳收支及其循环过程研究进展[J];生态学报;2011年19期
9 高奇;师学义;王子凌;李海明;;深圳市碳收支与土地利用变化的协整分析[J];水土保持研究;2013年06期
10 赵俊芳;延晓冬;贾根锁;;东北森林净第一性生产力与碳收支对气候变化的响应[J];生态学报;2008年01期
相关会议论文 前3条
1 周广胜;王玉辉;王凤玉;贾丙瑞;许振柱;;不同土地利用方式下的典型草原土壤呼吸作用及其碳收支评估[A];中国植物学会七十周年年会论文摘要汇编(1933—2003)[C];2003年
2 李芬;夏春海;蔡旭华;赖玉s,
本文编号:1916517
本文链接:https://www.wllwen.com/kejilunwen/nykj/1916517.html