耕地质量监测方法及实证研究
本文选题:耕地质量 + 监测 ; 参考:《山东师范大学》2017年硕士论文
【摘要】:耕地是保障经济发展与粮食安全的重要资源,耕地质量监测是保障耕地质量的有效途径。国家高度重视耕地质量监测工作,并在全国部署15个耕地质量等级监测试点工作,但各县市仍在探索高效便捷的监测方法,至今尚未形成完善具体的耕地质量监测的方法程序。在此背景下,对耕地质量监测的方法进行研究,具有重大的理论与现实意义。通过质量监测,掌握耕地质量的变化趋势,不仅是对已有工作成果的应用和扩展,同时对于耕地占补质数平衡、保障我国粮食安全、经济可持续发展具有重要意义。本文对耕地质量监测的方法和理论进行了详细阐述。首先要确定耕地质量监测区,耕地质量监测区可划分为耕地质量突变区、耕地质量渐变区与耕地质量相对稳定区。突变区指的是由于自然灾害或人为改造活动(项目建设)导致耕地质量存在显著变化或潜在显著变化区域,渐变区指的是县域内主要受自然环境因素和宏观经济政策因素影响,质量处于渐变状态或存在渐变趋势的耕地区域,相对稳定区指的是区域范围内除去耕地质量渐变区与耕地质量突变区以外的耕地区域。其次进行监测点布设,根据代表性、综合性、稳定性和差别化的原则,在确定样本容量的基础上,采用网格法、半变异函数法、分区布点法进行监测点的布设,并对监测点布设进行优化和精度检验。再次确定监测周期,包括定期监测、年度监测和实时监测。最后进行监测结果的分析,包括等别监测结果分析、主要因素监测结果分析和产能监测结果分析。在方法和理论阐述的基础上,本文以济南市的鲁西北平原区为例,进行了监测区划分与监测点布设的实证研究,并取得了如下成果:(1)利用土地利用变更数据、耕地分等成果、遥感影像图、项目建设资料,采用空间分析、调查咨询法等方法,将鲁西北平原区耕地划分为耕地质量突变区、耕地质量渐变区、耕地质量相对稳定区。耕地质量突变区7890公顷,其中济阳县耕地质量突变区的面积为7592公顷,占耕地质量突变区的96.23%。从突变原因来看,由项目建设导致的耕地质量突变7394公顷,占耕地突变区面积的93.72%,项目类型主要为高标准基本农田建设项目、土地整理项目、增减挂钩补充耕地项目。由建设占用导致的耕地质量突变220公顷,占耕地质量突变区的2.79%。由农业结构调整导致的耕地质量突变276公顷,占耕地质量突变区的3.49%。耕地质量渐变区1033公顷,其中,耕地质量逐渐提高的渐变类型类型为沙化减轻型与脱盐脱碱型,沙化减轻型渐变区共360公顷,占耕地质量渐变区的34.85%,主要分布在商河县,天桥区与济阳县分布较少;脱盐脱碱型渐变区共432公顷,占耕地质量渐变区的41.74%,主要分布在商河县与济阳县,天桥区有少量分布。耕地质量逐渐降低渐变类型的为逐步干旱型,共242公顷,占耕地质量渐变区的23.41%,主要分布在济阳县和商河县。耕地质量相对稳定区147581公顷,并进一步将耕地质量相对稳定区划分为9个经济等指数—耕地利用类型分区,一区(I区—旱地)620公顷,占耕地质量相对稳定区耕地总面积的0.42%;二区(I区—水浇地)43671公顷,占29.59%;三区(I区—水田)1602公顷,占1.09%;四区(II区—旱地)530公顷,占0.36%;五区(II区—水浇地)67272公顷,占45.58%;六区(II区—水田)1010公顷,占0.68%;七区(III区—旱地)280公顷,占0.19%;八区(III区—水浇地)32455公顷,占21.99%;九区(III区—水田)141公顷,占0.10%。(2)首先用变异函数法确定步长为4000米,采用4000乘4000的网格在全域内均匀布设监测点,并将监测点转化为监测单元。其次对监测单元布设进行优化,对耕地质量渐变区、耕地质量突变区监测单元进行增密处理,确保监测单元覆盖性良好,对耕地质量相对稳定区,按照分区面积比例法对各经济等指数—利用类型监测单元进行微调。最后对监测单元布局进行了精度检验,结果表明监测单元的选择与布局较为合理。鲁西北平原区共布设监测单元187个,监测单元面积共2043公顷。分行政区来看,商河县布设监测单元80个,监测单元总面积724.01公顷。济阳县布设监测单元90个,监测单元总面积1082公顷。天桥区布设监测点17个,监测单元总面积237公顷;分地类来看,水田共布设监测单元5个,监测单元总面积45.55公顷。水浇地共布设监测单元178个,监测单元总面积1883.11公顷。旱地共布设监测单元4个,监测单元总面积114.31公顷;分耕地等别来看,6等地布设18个监测单元,监测单元总面积182.60公顷。7等地布设57个监测单元,监测单元总面积628.50公顷。8等地布设65个监测单元,监测单元总面积840.21公顷。9等地布设44个监测单元,监测单元总面积375.90公顷。10等地布设3个监测单元,监测单元总面积15.76公顷。
[Abstract]:Cultivated land is an important resource to guarantee economic development and grain security. The quality monitoring of cultivated land is an effective way to guarantee the quality of cultivated land. The state attaches great importance to the quality monitoring of cultivated land, and deploys 15 pilot projects in the whole country, but the counties and cities are still exploring efficient and agile monitoring methods. In this context, it is of great theoretical and practical significance to study the methods of monitoring the quality of cultivated land. Through quality monitoring, the change trend of cultivated land quality is mastered, not only the application and expansion of the existing work results, but also the balance of the quantity of cultivated land, and the security of grain in China. The sustainable development of the economy is of great significance. In this paper, the methods and theories of the quality monitoring of cultivated land are elaborated in detail. First of all, the quality monitoring area of cultivated land should be determined. The cultivated land quality monitoring area can be divided into the cultivated land quality mutation area, the cultivated land quality gradient area and the cultivated land quality relatively stable area. The catastrophe zone refers to the natural disaster or artificial change. The production activity (project construction) leads to a significant change or potential significant change in the quality of cultivated land. The gradient area refers to the area of cultivated land which is mainly affected by natural environmental factors and macroeconomic policy factors, the quality is in the gradual changing state or the trend of gradual change, and the relative stabilization area refers to the removal of the quality gradient of the cultivated land within the regional range. On the basis of representative, comprehensive, stability and differentiation, grid method, semi variable function method and zoning distribution method are used to arrange monitoring points on the basis of the principle of representative, comprehensive, stability and differentiation, and the layout of monitoring points is optimized and the accuracy test is tested. Determine the monitoring cycle, including regular monitoring, annual monitoring and real-time monitoring. Finally, the analysis of monitoring results, including analysis of the results of other monitoring, analysis of main factors monitoring results and production monitoring results. Based on the method and theory, this paper takes the northwest plain of Ji'nan as an example. The results are as follows: (1) using land use change data, arable land classification results, remote sensing images, project construction data, spatial analysis, investigation and consulting methods, the cultivated land in the northwest plain area is divided into the mutation area of cultivated geology, the cultivated land quality gradient area, the cultivated land quality relatively stable area. The land quality mutation area is 7890 hectares, of which the area of the cultivated land quality mutation area in Jiyang county is 7592 hectares, which accounts for the mutation cause of the cultivated land quality mutation area. The change of cultivated land quality is 7394 hectares, accounting for 93.72% of the cultivated land area in the cultivated land, which is mainly the high standard basic farmland construction project and the land consolidation. 220 ha of cultivated land caused by construction occupation, 220 hectares of cultivated land quality mutation area, 276 ha of cultivated land quality mutation caused by agricultural structure adjustment, 1033 ha of 3.49%. cultivated land quality gradient area in cultivated land quality mutation area, among which the gradual type of cultivated land quality gradually increased For desertification reduction type and desalination and desalination type, the desertification reducing type gradient area is 360 hectares, accounting for 34.85% of the cultivated land quality gradient area, mainly distributed in Shanghe County, Tianqiao area and Jiyang county. The desalination and alkali free gradient area is 432 hectares, accounting for 41.74% of the cultivated land quality gradient area. The main distribution is in Shanghe county and Jiyang County, and the Tianqiao area has a small amount of distribution. The quality of cultivated land gradually reduced to gradually droughts, a total of 242 hectares, which accounted for 23.41% of the cultivated land quality gradual change zone, mainly in Jiyang and Shanghe counties. The cultivated land quality was relatively stable in 147581 hectares, and the relative stable area of cultivated land was divided into 9 economic indices - cultivated land use type zoning, one area (I area - drought). Land) 620 hectares, accounting for 0.42% of the total area of cultivated land in the relatively stable area of cultivated land; 43671 hectares (I area - water land) 43671 hectares, 29.59%; three area (area - paddy field) 1602 hectares, 1.09%; four district (II area - dry land) 530 hectares, 0.36%; five districts (II area - water land) 67272 ha, occupy 45.58%; II zone (Region - paddy field) hectares (III zone) - dry land) 280 hectares, accounting for 0.19%; eight area (III area - water land) 32455 hectares, 21.99%; nine area (III area - paddy) 141 hectares, 0.10%. (2) first determined by the variation function method, the step length is 4000 meters, the monitoring points are uniformly distributed in the whole domain by the 4000 multiplying 4000 grid, and the monitoring points are converted to monitoring units. Secondly, the monitoring unit is set up. In order to improve the density gradient area of cultivated land and the monitoring unit of the cultivated land quality mutation area, the monitoring unit is covered well, and the relative stable area of the cultivated land is relatively stable. In accordance with the area proportion method, the monitoring unit of each economic index and utilization type is fine tuned. Finally, the accuracy of the layout of the monitoring unit is tested. The results show that the monitoring unit is accurate. The selection and layout of the monitoring unit is more reasonable. There are 187 monitoring units in the northwest plain of Shandong Province, with a total area of 2043 hectares. According to the administrative area, 80 monitoring units are set up in Shanghe County, and the total area of the monitoring unit is 724.01 hectares. In Jiyang County, 90 monitoring units are set up, and the total area of monitoring units is 1082 hectares. The monitoring points are set up in the Tianqiao District. The monitoring points are set up in the Tianqiao District. The total area of the monitoring unit is 237 hectares, and the total area of the monitoring unit is 5. The total area of the monitoring unit is 45.55 hectares. The total area of the monitoring unit is 45.55 hectares. The total area of the monitoring unit is 178. The total area of the monitoring unit is 1883.11 hectares. The total area of the monitoring unit is 4, the total area of the monitoring unit is 114.31 hectares. In the other parts of the farmland, 18 monitoring units are set up in 6 and other places. The total area of the monitoring unit is 182.60 hectares of.7, and 57 monitoring units are set up. The total area of the monitoring unit is 628.50 hectares of.8, and 65 monitoring units are set up. The total area of the monitoring unit is 840.21 hectares of.9 and 44 monitoring units. The total area of the monitoring unit is 375.90 hectares of.10, and 3 monitoring units are set up. The total area of the monitoring unit is 15.76. Now.
【学位授予单位】:山东师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:F323.211
【参考文献】
相关期刊论文 前10条
1 张兵;崔希民;赵彦博;袁德宝;;基于High-1卫星影像的土地整治遥感监测方法研究与实践[J];农业工程学报;2015年20期
2 杨建宇;岳彦利;宋海荣;汤赛;叶思菁;徐凡;;基于空间模拟退火算法的耕地质量布样及优化方法[J];农业工程学报;2015年20期
3 祝锦霞;徐保根;章琳云;;基于半方差函数与等别的耕地质量监测样点优化布设方法[J];农业工程学报;2015年19期
4 王佳宁;孔祥斌;张青璞;刘炎;;基于农用地分等的县级耕地质量等级监测指标选取方法——以内蒙古达拉特旗为例[J];中国农业大学学报;2015年03期
5 汪芳甜;安萍莉;蔡璐佳;黄鑫鑫;郝晋珉;;基于RS与GIS的内蒙古武川县退耕还林生态成效监测[J];农业工程学报;2015年11期
6 马增辉;韩霁昌;王欢元;张露;张卫华;;LIMS系统在新增耕地质量监测中的研究与应用[J];安徽农业科学;2015年14期
7 孙江锋;张合兵;刘明远;陈宁丽;李悦;;耕地动态监测应用管理系统框架设计及实现[J];中国农业资源与区划;2015年02期
8 余述琼;张蚌蚌;相慧;孔祥斌;;基于因素组合的耕地质量等级监测样点布控方法[J];农业工程学报;2014年24期
9 杨瑞珍;陈印军;;东北地区耕地质量状况及变化态势分析[J];中国农业资源与区划;2014年06期
10 李燕丽;潘贤章;王昌昆;刘娅;赵其国;;广西中南部耕地土壤有机质和全氮变化的遥感监测[J];生态学报;2014年18期
相关硕士学位论文 前5条
1 王业融;松嫩平原耕地质量监测指标体系研究[D];东北农业大学;2016年
2 蔡鹭斌;湖南省耕地质量监测布点方法研究[D];湖南农业大学;2014年
3 韩振坤;基于地统计学的县域耕地质量监测样点布局研究[D];华中师范大学;2014年
4 宋芊;耕地质量等别变化监测指标分区选取研究[D];中国地质大学(北京);2014年
5 胡晓涛;突变性因素引起的耕地等别质量变化研究[D];中国地质大学(北京);2013年
,本文编号:1939880
本文链接:https://www.wllwen.com/kejilunwen/nykj/1939880.html