当前位置:主页 > 科技论文 > 农业技术论文 >

前置反硝化生物滤池改进工艺处理水产养殖废水的效能研究

发布时间:2018-06-07 08:29

  本文选题:前置反硝化生物滤池 + 水产养殖废水 ; 参考:《扬州大学》2017年硕士论文


【摘要】:目前水产养殖已成为我国国民经济的重要组成部分。池塘养殖模式的推广促进了我国经济快速发展的同时也带来了诸多环境和生态问题。如养殖环境恶化、水资源浪费、污染严重、设施破旧等问题,严重制约了水产养殖业的可持续发展。曝气生物滤池在污水处理及回用工程中的研究应用已较为广泛,它具有抗冲击负荷能力强、占地面积小、处理效果好、结构简单等优点,目前将曝气生物滤池用于处理低碳氮比水产养殖废水的研究还鲜少报道。为强化脱氮效果,本试验增加缺氧段结合好氧段的气升式内循环曝气生物滤池,组成前置反硝化生物滤池改进工艺。本论文研究了该工艺的挂膜启动与最佳运行参数,系统内含氮化合物的迁移转化机理以及对典型抗生素的去除效果,为该种技术用于水产养殖废水的循环利用提供了新的思路和理论参考。主要研究内容和结果如下:1、本实验在室温20~28 ℃、Do(C/N滤池)≈3mg/L、pH为6.8~7.6的条件下启动,将挂膜分为两个阶段:静态闷曝阶段(11d)、逐渐增大流速的驯化阶段(10d),CODMn出水浓度稳定在5mg/L左右,NH4+-N去除率达到了 58%,TN去除率达到了 62%,标志着系统挂膜成功。2、影响本工艺系统运行效能的主要因素有水力负荷、气水比、硝化液回流比及A/O体积比等。通过正交试验得到运行优化参数,当水力负荷q=18m3/m2·d,硝化液回流比100%,气水比为6:1,A/O体积比为1.8时,本工艺对各项污染物的整体去除效率达到最佳。系统CODMn、NH4+-N、TN去除率分别达到了 44.08%、89.46%、85.05%,出水值分别为4.55mg/L、0.68mg/L、0.87mg/L左右,均达到了 GB3838-2002《地表水环境质量标准》Ⅲ类标准,仅TP去除效果不理想。3、系统在最佳工况条件下稳定运行期间,缺氧段(DN)和好氧段(C/N)对CODMn的去除率均值分别为6%、37.11%,对NH4+-N的去除率均值分别为51.45%、37.41%,对TN的去除率均值分别为64.74%、19.98%。4、缺氧(DN)反应器中的脱氮过程包括:传统反硝化(反硝化菌以有机物为碳源脱氮)、微生物的同化、厌氧氨氧化作用以及少量的异养反硝化脱氮。从TN和的去除情况来看,基本可以认定厌氧氨氧化作用和传统厌氧反硝化作用对脱氮的贡献率相当,二者共去除了约72.4%的总氮。5、好氧(C/N)反应器中的脱氮过程包括:同步硝化反硝化作用(SND)和微生物同化作用且SND效果明显,对总氮去除率贡献高。好氧(C/N)反应器进出水NO2--N/NOx--N比值总处于百分位,整体偏低,说明本试验系统内基本不存在NO2--N积累问题。6、本研究优化建立了固相萃取技术萃取养殖废水水箱中的磺胺甲VA唑抗生素。采用BOJIN公司的HLB固相萃取小柱,待测水样pH调节至3,上样流速控制在4mL/min,淋洗液为超纯水,洗脱液为4mL甲醇的条件下实现废水中磺胺甲VA唑的萃取。7、江苏省常熟市一规模化养殖场水体中的磺胺甲VA唑浓度和去除情况呈现一定的季节变化,秋冬季浓度高于春夏季。秋季磺胺甲VA唑含量达到全年最高水平为14.31μg/L,几乎是夏季含量1.63μg/L的8倍。本试验重点研究对比了夏秋两季本工艺系统各反应器的处理效能,缺氧DN反应器在夏秋两季的处理效率均呈负去除率,夏季为-14%,秋季为-20%;好氧C/N反应器在夏秋两季的处理效率均高达90%以上且夏季略好于秋季。系统出水磺胺甲VA唑平均浓度均处于较低水平,本工艺对抗生素的处理效果稳定。
[Abstract]:At present, aquaculture has become an important part of our national economy. The promotion of pond culture mode promotes the rapid economic development of our country and brings many environmental and ecological problems, such as the deterioration of the aquaculture environment, the waste of water resources, the serious pollution, the old facilities and so on, which seriously restrict the sustainable development of aquaculture. Biological aerated filter has been widely used in sewage treatment and reuse engineering. It has the advantages of strong anti shock load capacity, small area, good treatment effect, simple structure and so on. At present, the research on the application of BAF to treatment of low carbon and nitrogen wastewater is rarely reported. The improvement process of pre denitrification biofilter is composed of anoxic segment combined with aerobic stage, which consists of an aerated biological filter with aerobic section. This paper studies the film starting and optimum operating parameters, the transfer mechanism of nitrogen compounds in the system and the removal effect of typical antibiotics, for the use of this technology in aquaculture waste. Water recycling provides new ideas and theoretical references. The main contents and results are as follows: 1, the experiment is started at room temperature 20~28, Do (C/N filter) 3mg/L and pH is 6.8 ~ 7.6, and the hanging film is divided into two stages: static dull aeration phase (11d), gradually increasing the acclimation stage of flow velocity (10d), and the concentration of the effluent in CODMn is stable in 5mg/L The removal rate of NH4+-N reached 58%, and the removal rate of TN reached 62%, indicating that the system was successfully.2. The main factors affecting the operating efficiency of the system were hydraulic load, gas water ratio, reflux ratio of nitrifying liquid and A/O volume ratio. The optimized parameters were obtained by orthogonal test, when the hydraulic load was q=18m3/m2 D, the reflux ratio of nitrification solution was 100%, gas was gas. When the water ratio is 6:1 and the volume ratio of A/O is 1.8, the overall removal efficiency of various pollutants is best. The removal rate of the system CODMn, NH4+-N and TN reaches 44.08%, 89.46%, 85.05% respectively. The effluent values are 4.55mg/L, 0.68mg/L, 0.87mg/L, respectively, and all reach the GB3838-2002< surface water environmental quality standard > class III standard, only TP removal effect. Not ideal.3, during the stable operation of the system under the optimal operating conditions, the mean removal rates of DN and C/N to CODMn were 6% and 37.11% respectively, the mean removal rates for NH4+-N were 51.45%, 37.41% respectively, and the average removal rates for TN were 64.74%, 19.98%.4, and DN reactor, including the traditional denitrification (anti denitrification). Nitrifying bacteria take organic matter as carbon source, microbial assimilation, anaerobic ammonia oxidation and a small amount of heterotrophic denitrification. From the TN and the removal conditions, the anaerobic ammonia oxidation and the traditional anaerobic denitrification have the same contribution rate to the denitrification. Two of the total nitrogen.5 and aerobic (C/N) reaction were removed. The process of denitrification in the device includes: simultaneous nitrification and denitrification (SND) and microbial assimilation and obvious SND effect, high contribution to the total nitrogen removal rate. The NO2--N/NOx--N ratio of the aerobic (C/N) reactor is always in the percentile and the whole is on the low side. It shows that there is no NO2--N accumulation problem.6 in this test system. This study optimized the establishment of solid solution. The phase extraction technology is used to extract the sulfamethoxazole antibiotics in the aquaculture wastewater water tank. Using the HLB solid phase extraction column of BOJIN company, the water sample pH is adjusted to 3, the sample flow velocity is controlled in 4mL/min, the leaching solution is ultra pure water and the eluant is 4mL methanol, the extraction.7 of the sulfamethoxazole VA azole in the wastewater, and the scale culture of Changshou City in Jiangsu Province The concentration and removal of sulfamethoxazole in the field showed a certain seasonal change, and the concentration in autumn and winter was higher than that in spring and summer. The highest level of VA in autumn was 14.31 mu g/L, almost 8 times that of the summer content of 1.63 g/L. This experiment was focused on comparing the treatment efficiency of each reactor in the two quarter of summer and autumn. The treatment efficiency of oxygen DN reactor in the two quarter of summer and autumn is negative, -14% in summer and -20% in autumn. The treatment efficiency of aerobic C/N reactor in summer and autumn is above 90% in summer and autumn, and in summer is slightly better than autumn. The average concentration of sulfamethoxazole VA in the effluent of the system is at a low level, and the treatment effect of this process is stable.
【学位授予单位】:扬州大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X714

【参考文献】

相关期刊论文 前10条

1 杨基峰;应光国;赵建亮;陶然;苏浩昌;;配套养殖体系中部分抗生素的污染特征[J];环境化学;2015年01期

2 萧蕾;洪彦;;都市农业新技术 鱼菜共生系统及其立体化案例研究[J];风景园林;2014年04期

3 蒋晓阳;熊文军;刘子正;郭一舟;黄凯;王宗平;;竹制填料生物接触氧化工艺处理污染河水[J];环境工程学报;2014年01期

4 王军;姜冰;韩家波;焦凤荣;张立民;;辽宁省池塘养殖废水排放的分布及其对水环境的影响[J];水产科学;2013年03期

5 赵巧玲;李谷;陶玲;李晓莉;林玉良;姚延丹;;光合细菌强化对精养鱼塘藻类群落结构的影响[J];淡水渔业;2010年06期

6 蒋进元;宋宏宾;周岳溪;崔俊涛;窦立军;;三级生物膜工艺处理水产养殖循环水[J];环境科学研究;2010年09期

7 曹文平;谭水成;;竹丝生物膜反应器修复校园景观水体的实验研究[J];环境工程学报;2010年07期

8 季建国;钟开伟;陈彪;邹燕;;高邮湖水产养殖对水环境影响分析及对策思考[J];江苏水利;2009年11期

9 李飞;张超杰;曲燕;陈晶;周琪;颜湘波;马金星;;污水中短长链全氟羧酸检测方法的开发[J];环境科学;2009年09期

10 陈清华;;水产养殖业中抗生素使用的风险及其控制[J];水产科技情报;2009年02期

相关博士学位论文 前4条

1 孙丰霞;污水处理系统中磺胺嘧啶和磺胺甲VA唑的优化处理研究[D];山东农业大学;2014年

2 柳瑶;生物流化床养殖污水处理系统的设计与实验研究[D];中国海洋大学;2013年

3 涂志凤;新型吸附材料的制备及其在痕量金属离子分析中的应用[D];兰州大学;2012年

4 黄凤莲;滩涂海水种植-养殖系统微生物修复研究[D];中山大学;2005年

相关硕士学位论文 前5条

1 马蕴琦;竹丝填料反应器用于污水厂尾水生物脱氮的试验研究[D];扬州大学;2014年

2 江云;水产养殖废水生物净化技术研究[D];扬州大学;2013年

3 白杨;污水厂中磺胺类抗生素的去除效率与残留特征[D];哈尔滨工程大学;2012年

4 郭俊元;前置反硝化生物滤池对低碳氮比污水的脱氮性能研究[D];湖南大学;2010年

5 曹涵;循环水养殖生物滤池滤料挂膜及其水处理效果研究[D];中国海洋大学;2008年



本文编号:1990533

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/nykj/1990533.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a1cca***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com