长期菌渣还田对土壤磷素形态及有效性的影响
本文选题:菌渣 + 化肥 ; 参考:《浙江农林大学》2015年硕士论文
【摘要】:磷是作物营养三要素之一,磷肥在农业生产中被大规模使用,虽保证了种植物的高产稳产,但由此也带来严重的土壤和水体污染问题。近年来我国食用菌产业迅速发展,随意丢弃废弃物菌渣等亦造成资源浪费和环境污染。据研究,食用菌渣中含有大量的木质素及矿质元素,可以作为农业生产中良好的有机肥料和土壤改良剂,对土壤磷素营养供应具有较高的利用价值。为揭示菌渣还田对稻田生态系统磷元素的丰缺影响,本文以浙江省嘉兴市王店镇五浪园基地大田为研究对象,以不同培肥措施对土壤磷生物有效性的影响为研究内容,采用大田定位试验和室内分析化验,揭示土壤磷素动态变化特征,探讨菌渣还田对稻田土壤磷素状况影响的变化机理。大田试验从2010年5月开始,到2014年5月结束,布置9个不同化肥与菌渣配施比例处理(处理1:C0F0;处理2:C0F50;处理3:C0F100;处理4:C50F0;处理5:C50F50;处理6:C50F100;处理7:C100F0;处理8:C100F50;处理9:C100F100,其中C表化肥,F表菌渣)。通过分析2010年5月和2014年5月土壤样品的差异,研究菌渣还田对土壤中不同形态无机磷的丰缺变化、有机磷和全磷对土壤的给养状况以及稻田生态系统养分平衡的影响。主要结果如下:(1)懫用改进的Hedley磷分级法,通过长期定位试验分析测定了4种不同的无机磷形态。结果表明:不同肥料配施的处理对土壤4种不同形态磷素含量的增幅效果不同,其中菌渣和化肥配施明显提高了活性无机磷NaHCO3-P的含量,与单施化肥和单施菌渣的处理相比,增长显著。菌渣和化肥配施对稳定性高的HCl-P和残渣态磷影响不大,说明菌渣和化肥配施对难溶态磷的作用不明显。长期不施肥的处理土壤中的无机磷因持续的作物吸收而含量逐渐下降,且难溶态磷也具有一定的有效性,起到了补充磷源的作用。(2)以Hedley磷分级体系为基础,本试验土壤表层磷素以无机磷为主体,占全磷总量的77.8%~84.2%,有机磷只有15.8%~22.2%。按活性高低分,以高稳定性磷(残渣态磷)为主,占到53.4%;其次为中等活性磷(NaOH-P,HCl-P),所占比例为为39.5%;活性无机磷含量最低(NaHCO3-P),仅占全磷量的10.1%。长期菌渣和化肥配施下各处理表现为无机磷含量与有机磷含量均有所增加。与背景值相比,不施肥的土壤中Hedley磷分级中各组分含量变化基本一致,活性较高的NaHCO3-P和NaOH-P含量均显著降低,而稳定程度较高的HCl-P和残渣态磷含量没有明显变化。表明长期不施化肥土壤中的活性磷含量显著降低,而稳定性磷含量没有明显变化。(3)长期菌渣和化肥配施能显著增加供试土壤中全磷含量,但是不同施肥处理对土壤全磷含量的增加幅度不同。长期菌渣还田条件下,单施化肥比单施菌渣提升全磷总量效果明显,而单施菌渣全磷没有明显增加。而长期菌渣和化肥配施条件下,随着菌渣的施入,土壤全磷量显著增长。(4)长期菌渣和化肥配施能显著增加供试土壤中有机磷和速效磷含量。在施肥各处理中,长期单施化肥土壤中的有机磷含量没有显著增加,长期施用菌渣则能显著提高土壤中的有机磷含量;而长期单施化肥能显著提高土壤速效磷含量,长期施用菌渣对土壤速效磷没有显著影响。综上所述,通过菌渣和化肥的合理配施,来协调不同形态磷的比例可以促进作物的高产和磷肥的节约,是土壤可持续发展的重要手段。
[Abstract]:Phosphorus is one of the three elements of crop nutrition. Phosphate fertilizer is widely used in agricultural production. Although it has guaranteed high and stable yield of plant, it also brings serious pollution problems of soil and water. In recent years, the mushroom industry in China has developed rapidly. The waste and environmental pollution are also caused by random discarding of waste fungi. According to research, edible fungi The residue contains a large number of lignin and mineral elements, which can be used as a good organic fertilizer and soil improvement agent in agricultural production, and has a high utilization value for soil phosphorus nutrient supply. This is to reveal the effect of microbial residue on the phosphorus in the paddy ecosystem. This paper is based on the five wave garden base in Wang Dian Town, Jiaxing, Zhejiang. The effect of Different Fertilizer Cultivation Measures on soil phosphorus bioavailability was studied. The dynamic change characteristics of soil phosphorus were revealed by the field location test and laboratory analysis, and the mechanism of the effect of microbial residue on the phosphorus status in the paddy soil was discussed. The field experiment started from May 2010 to the end of May 2014 and arranged 9. Different fertilizers and bacteria residue were proportions (treatment of 1:C0F0; treatment of 2:C0F50; treatment of 3:C0F100; treatment of 4:C50F0; treatment of 5:C50F50; treatment of 6:C50F100; treatment of 7:C100F0; treatment of 8:C100F50; processing 9:C100F100, in which C chemical fertilizers, F surface bacteria residue). By analyzing the differences in soil samples in May 2010 and May 2014, the difference between the soil and soil was studied in the soil. The main results are as follows: (1) 4 different inorganic phosphorus forms were determined by the modified Hedley phosphorus classification method by long-term location test. The results showed that 4 kinds of soil were treated with different fertilizer treatments. The increasing effect of the same phosphorus content was different, in which the addition of bacteria residue and chemical fertilizer obviously increased the content of active inorganic phosphorus NaHCO3-P. Compared with the treatment of single application of chemical fertilizer and single application of bacteria residue, the addition of bacteria residue and chemical fertilizer had little influence on the high stability of HCl-P and residue phosphorus. It is not obvious that the content of inorganic phosphorus in the soil which is not fertilized for a long time has been gradually decreased because of continuous crop absorption, and the insoluble phosphorus also has some effectiveness. (2) based on the Hedley phosphorus classification system, the soil surface phosphorus is mainly inorganic phosphorus, which accounts for 77.8%~84.2% of total phosphorus. Only 15.8%~22.2%. is divided into 53.4% of high stable phosphorus (residue phosphorus), followed by medium active phosphorus (NaOH-P, HCl-P), the proportion is 39.5%, the content of active inorganic phosphorus is the lowest (NaHCO3-P), and the 10.1%. long-term residue and chemical fertilizer of only the total phosphorus content are expressed as inorganic phosphorus content and organophosphorus content. Compared with the background value, the content of each component in the Hedley phosphorus classification in the soil without fertilizer was basically the same, the content of NaHCO3-P and NaOH-P with higher activity decreased significantly, but the content of HCl-P and residual phosphorus in the soil with higher stability was not obviously changed, indicating that the content of active phosphorus in the soil of long-term non fertilizer application was significantly reduced. There was no obvious change in the content of phosphorus. (3) the total phosphorus content in the tested soil was significantly increased by the long-term residue and chemical fertilizer application, but the total phosphorus content in the soil was increased by different fertilization treatments. With the application of long-term bacterial residue and chemical fertilizer, the amount of total phosphorus in soil increased significantly with the application of bacterial residue. (4) the content of organophosphorus and available phosphorus in the tested soil could be significantly increased by long-term bacterial residue and chemical fertilizer application. Increasing the content of organophosphorus in soil, while long-term single fertilization can significantly increase the content of available phosphorus in soil. Long term application of bacteria residue has no significant effect on available phosphorus in soil. An important means of development.
【学位授予单位】:浙江农林大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:S158
【相似文献】
相关期刊论文 前10条
1 王乃英;;关于抗生素菌渣的利用[J];当代畜牧;1992年01期
2 周松林;菌渣的利用——生产燃气[J];食用菌;2002年01期
3 周松林;就“菌渣的利用——生产燃气”答读者问[J];食用菌;2002年04期
4 江同均;菌渣的妙用[J];食用菌;2002年05期
5 闫宝松,马凤,张跃新,孟宪勇;废弃菌渣二次利用及环保处理方法[J];中国林副特产;2005年04期
6 周天录;;菌渣还田变废为宝[J];湖南农业;2007年01期
7 周保华;高勤;王洪华;李志超;王冬浩;;青霉素、土霉素菌渣研究利用现状及特性分析[J];河北工业科技;2011年05期
8 贾明;陆建忠;尹君;;菌渣直接还田对设施大棚内土壤理化性状影响初探[J];食用菌;2012年03期
9 徐康铭;吕蔚;王鸿磊;秦娜;邹积华;丁强;;双孢菇菌渣养殖蛴螬技术初探[J];北方园艺;2012年22期
10 丁强;吕蔚;徐康铭;王鸿磊;秦娜;崔从光;邹积华;;双孢菇菌渣养殖蛴螬技术研究(英文)[J];Agricultural Science & Technology;2013年01期
相关会议论文 前5条
1 宫志远;;食用菌菌渣综合研究与利用现状[A];第九届全国食用菌学术研讨会论文集[C];2010年
2 李建国;尹微琴;奚云龙;储亚云;;秸秆循环利用技术与农业可持续发展研究[A];江苏土壤肥料科学与农业环境[C];2004年
3 宫志远;;食用菌菌渣综合研究与利用现状[A];第九届全国食用菌学术研讨会摘要集[C];2010年
4 陈海波;李艳菊;王悦;王宇洲;梁山琴;冯丝雨;万淑珍;饶嘉健;;金霉素菌渣生物降解特性研究[A];2013中国环境科学学会学术年会论文集(第五卷)[C];2013年
5 宋婷婷;蔡为明;范丽军;金群力;冯伟林;沈颖越;;以金针菇菌渣和稻草为基础两种双孢蘑菇堆肥理化性质与微生物群落动态比较分析[A];第十届全国食用菌学术研讨会论文汇编[C];2014年
相关重要报纸文章 前10条
1 通讯员 孟蕾 记者 郭东;全省三成多抗生素菌渣将被转化[N];河北日报;2012年
2 杨代军 本报记者 陈泳;菌渣集中放 废物变肥料[N];成都日报;2006年
3 云家春邋何骏天 本报记者 汪光辉;菌渣做木炭垃圾换成钱[N];成都日报;2008年
4 通讯员 孟蕾 记者 周迎久;让菌渣不再是危废[N];中国环境报;2013年
5 本报通讯员 孟蕾 本报见习记者 孟然 本报记者 周洁;抗生素菌渣消“毒”变“宝”[N];河北日报;2013年
6 王道全;一纸建议 废渣变宝[N];四川政协报;2005年
7 吴桐 兰波 钟丽娟 李雪林;金堂走出了一条食用菌菌渣循环经济之路[N];成都日报;2010年
8 曹建军邋马友晟 赵遂;金坛市“吃干榨尽”农业废弃物[N];农民日报;2007年
9 杨静;贵阳市把菇农废弃菌渣变成“宝”[N];贵州日报;2008年
10 本报记者 曹小佳;什邡拟建废渣利用激励机制[N];中国环境报;2009年
相关博士学位论文 前1条
1 孙西宁;抗生素菌渣的改性及其对重金属吸附性能研究[D];西北农林科技大学;2015年
相关硕士学位论文 前10条
1 刘晓梅;杏鲍菇菌渣纤维素降解菌的筛选、复合菌剂构建及应用[D];中国农业科学院;2015年
2 米静静;菌渣对废水中Pb(Ⅱ)和Cd(Ⅱ)吸附性能的研究[D];西北农林科技大学;2015年
3 高妍;基于厌氧消化的青霉素菌渣无害化处理技术研究[D];河北科技大学;2015年
4 冯振凯;长期菌渣还田对土壤磷素形态及有效性的影响[D];浙江农林大学;2015年
5 罗婷;菌渣还田对土壤环境效应的影响研究[D];四川农业大学;2009年
6 朱莹;土霉素菌渣利用和处置过程环境风险评价体系的研究[D];哈尔滨工业大学;2013年
7 苑丽梅;头孢菌渣中残留效价检测方法及菌渣资源化可行性研究[D];哈尔滨工业大学;2014年
8 苗杨;青霉素菌渣风险评价体系及其管理体系框架构建研究[D];哈尔滨工业大学;2014年
9 王志华;野生大型真菌菌渣制备及其肥效的初步研究[D];江西农业大学;2014年
10 蔡翔;可利霉素菌渣作为氮源的再利用研究[D];河南大学;2011年
,本文编号:2045708
本文链接:https://www.wllwen.com/kejilunwen/nykj/2045708.html