文登区土壤有机质及有效态微量元素的空间分布和影响因子分析
本文选题:土壤有机质 + 有效态微量元素 ; 参考:《山东农业大学》2017年硕士论文
【摘要】:土地的节约集约利用首先要对土壤养分进行科学管理和施肥,有助于农业发展。对土壤养分的空间异质性进行充分了解并掌握养分分布规律,才能进行更深入的定性定量分析研究,这也是科学管理土壤养分以及有效、精准、合理施肥的基础(刘杏梅,2003)。土壤有机质和有效态微量元素的含量是指示土壤中肥力的重要指标,在农业生产中土壤有机质和微量元素的含量是农产品产量和品质的重要限制性因子。本研究通过结合传统统计学、地统计学和应用GIS的方法,研究分析了威海市文登区的土壤有机质和有效态微量元素的空间分布特征和变异规律,初步分析了部分土壤养分状况和相关影响因子并探讨了养分的分区管理以及合理施肥的依据,主要研究内容和结果如下:(1)对文登区2010年1300个土壤采样点进行化验收集整理并进行一般描述性统计,结果表明,有机质和有效态微量元素均符合正态分布,SOM含量平均值为10.48 g/kg;有效态铁、锰、铜、锌、硼的含量平均值为42.62 mg/kg、39.95 mg/kg、3.36mg/kg、2.22 mg/kg、0.27 mg/kg;从平均值来看,有机质在适中范围内的中下范围区(10.0~20.0 g/kg),有效态硼处于缺乏状态(0.2~0.5 mg/kg),有效态锌处于含量丰富区(1.0~3.0 mg/kg),其余的元素有效态铁、有效态锰和有效态铜超出最高临界值,尤其是有效态锰远远超出临界值(30 mg/kg)。其中有效态铁、锰、铜、锌分别超出适中值4倍、2.5倍、3倍、2倍。除此之外,土壤有机质和五种土壤有效态微量元素的变异系数在15.74%-66.67%之间,可知都是中等变异程度。(2)在GS+7.0半方差分析软件中分析得出,除了有效态铁是纯块金效应外,土壤有机质最佳拟合模型为球面模型,有效态锰、铜、锌均为指数模型,有效态硼为高斯模型。土壤有效态铁块金值较大,土壤有机质次之,其他四种微量元素块金值较小,说明在最小间距内的变异分析过程中引起的误差较小。土壤有效态铁的块金值与基台的比值等于1,为纯块金效应,在整个尺度上具有恒定变异。有机质和有效态硼的块金值与基台值的比值较大,空间相关性弱,耕种制度、施肥条件等人为活动对分布影响比较大,土壤有效态锰、铜、锌的块基比较小,说明空间相关性强,说明在该研究区域内,空间变异性主要影响因素是结构性因素。从变程来看,不同元素的变程差异很大,变程最大的为有效态锰,为1021m;最小为有效态铜,为275m;有效态锌、有效态铜、有效态锰变程都在200m-400m之间,影响范围较小,空间自相关距离小。(3)根据普通克里格内插法得到的土壤有机质和五种有效态微量元素的空间分布图可知,土壤有效态锌没有明显的分布规律,分布比较细碎化;土壤有机质和有效态铁呈现条带状分布;土壤有效态锰、铜、硼分布呈现斑块化;除土壤有效态铁只有一个分区外,土壤有机质和其他四种有效态微量元素均分为两个区。(4)将土壤采样点和结构性因素进行叠加分析,结果可知,土壤酸碱度、坡度、土地利用类型、土壤类型、土壤质地对有机质和微量元素的有效性均有不同程度的影响。土地利用类型中,变化表现为菜地果园农田药材;土壤酸碱度分布图中,中性土壤中有机质含量最多,其次是弱酸性和强酸性;在不同土壤质地,土壤有机质平均含量变化是中壤轻壤砂壤砂土;在坡度分析中,土壤有机质在3°∽15°范围含量最高,然后是≤3°范围区、≥15°范围区,并不是随着坡度降低含量逐渐增多,受人为因素影响较大;在土壤类型中,棕壤中有机质含量最多,然后依次是潮土、粗骨土、石质土、风沙土。在对五种土壤有效态微量元素的分析中,有效态锌、硼受不同因素影响最少,有效态锌受土壤类型、利用类型的影响,有效态硼受坡度、土壤类型、利用类型的影响,有效态锰在土壤酸碱度、坡度、土壤类型的影响下与其他微量元素表现相反,对于有效态铁,除了利用类型外,其他四个要素对其有不同程度的影响。
[Abstract]:The conservation and intensive use of land should be the first to carry out scientific management and fertilization of soil nutrients, which will help the development of agriculture. To fully understand the spatial heterogeneity of soil nutrients and to master the distribution rules of nutrients, can we carry out a more in-depth qualitative and quantitative analysis, which is also the scientific management of soil nutrients and effective, accurate and reasonable fertilization. The basis (Liu Xingmei, 2003). The content of soil organic matter and effective trace elements is an important indicator of soil fertility. In agricultural production, the content of soil organic matter and trace elements is an important limiting factor for the yield and quality of agricultural products. This study has been studied by combining traditional statistics, geostatistics and GIS methods. The spatial distribution characteristics and variation laws of soil organic matter and effective trace elements in Wendeng District of Weihai were analyzed. Some soil nutrient status and related factors were preliminarily analyzed, and the subregional management of nutrients and the basis for rational fertilization were discussed. The main contents and results were as follows: (1) 1300 soil mining in 2010 in Wendeng District The samples were collected and collected for general descriptive statistics. The results showed that the organic matter and the effective trace elements were in normal distribution. The average value of SOM content was 10.48 g/kg, and the average content of the effective iron, manganese, copper, zinc and boron was 42.62 mg/kg, 39.95 mg/kg, 3.36mg/kg, 2.22 mg/kg, 0.27 mg/kg, and the organic matter was in the mean value. In the moderate range (10.0~20.0 g/kg), the effective state boron is in the lack of state (0.2~0.5 mg/kg), the effective state zinc is in the rich region (1.0~3.0 mg/kg), the other elements are effective iron, the effective state manganese and effective copper exceed the maximum critical value, especially the effective manganese is far beyond the critical value (30 mg/kg). Copper and zinc are 4 times, 2.5 times, 3 times and 2 times of the moderate value respectively. In addition, the coefficient of variation of soil organic matter and five soil effective trace elements is between 15.74%-66.67% and the degree of medium variation. (2) in the analysis of GS+7.0 semi variance analysis software, the soil organic matter is best fit except that the effective iron is the pure gold effect. The model is spherical model. The effective state manganese, copper and zinc are all exponential models, and the effective state boron is Gauss model. The soil effective iron block gold value is larger, the soil organic matter is second, the other four kinds of trace elements are small, which shows that the error caused by the variation analysis process in the minimum distance is smaller. The ratio is equal to 1, for the pure bulk gold effect, there is a constant variation on the whole scale. The ratio of the value of the organic matter and the effective state boron to the base station value is larger, the spatial correlation is weak, the cultivation system, the fertilizer condition and so on are relatively large, the soil effective manganese, copper and zinc are relatively small, indicating that the spatial correlation is strong, indicating that the spatial correlation is strong, indicating that the spatial correlation is strong and that the spatial correlation is strong. In the study area, the main factors affecting the spatial variability are structural factors. From the point of view of the variation, the variation range of different elements is very large, the most effective state of manganese, 1021m, the minimum effective copper, 275m, the effective state of zinc, the effective state of copper and the effective state of manganese are between 200m-400m, and the space autocorrelation distance is small. (3) according to the spatial distribution map of soil organic matter and five effective trace elements obtained by common CLG interpolation, there is no obvious distribution law of available zinc in soil, and the distribution of soil organic matter and effective iron present strip distribution; soil available manganese, copper and boron are distributed in patches; the soil is effective in addition to soil. The soil organic matter and the other four effective trace elements are divided into two regions. (4) the soil sampling points and the structural factors are superimposed. The results show that the soil pH, slope, land use type, soil type and soil texture have different effects on the effectiveness of organic matter and trace elements. In the type of land use, the change is shown in the vegetable garden of the vegetable field. In the soil pH distribution map, the content of organic matter in the neutral soil is the most, followed by weak acid and strong acid. In the different soil texture, the change of the average content of soil organic matter is in the medium soil light soil sandy soil sand soil; in the slope analysis, the soil organic matter is in the range of 3 degrees 15 degrees. The content is the highest, and then the area of less than 3 degrees, more than 15 degrees area, not gradually increasing with the decrease of the gradient, and influenced by human factors. In the soil type, the content of organic matter in the brown soil is the most, and then the soil, the coarse bone, the stone soil, the wind sand soil. In the analysis of the five kinds of soil effective trace elements, the effective state zinc and boron are in the analysis. The effective state zinc is affected by the soil type, the effect of use type, the effect of effective state boron on the slope, the type of soil and the type of utilization, and the effective state manganese is opposite to the other trace elements under the influence of soil pH, slope and soil type. In addition to the use type, the other four elements have the effective state iron. The influence of varying degrees.
【学位授予单位】:山东农业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S153.6
【参考文献】
相关期刊论文 前10条
1 黄魏;韩宗伟;罗云;张春弟;;基于地形单元的土壤有机质空间变异研究[J];农业机械学报;2015年04期
2 邓欧平;周稀;黄萍萍;邓良基;;川中紫色丘区土壤养分空间分异与地形因子相关性研究[J];资源科学;2013年12期
3 刘国顺;常栋;叶协锋;杨永锋;殷英;屈建康;;基于GIS的缓坡烟田土壤养分空间变异研究[J];生态学报;2013年08期
4 赵明松;张甘霖;王德彩;李德成;潘贤章;赵玉国;;徐淮黄泛平原土壤有机质空间变异特征及主控因素分析[J];土壤学报;2013年01期
5 韩丹;程先富;谢金红;邓良;;大别山区江子河流域土壤有机质的空间变异及其影响因素[J];土壤学报;2012年02期
6 王栋;李辉信;胡锋;;不同耕作方式下覆草旱作稻田土壤肥力特征[J];土壤学报;2011年06期
7 徐剑波;宋立生;彭磊;张桥;;土壤养分空间估测方法研究综述[J];生态环境学报;2011年Z2期
8 李婷;张世熔;刘浔;徐小逊;黄元仿;孙丹峰;李保国;;沱江流域中游土壤有机质的空间变异特点及其影响因素[J];土壤学报;2011年04期
9 张晓霞;李占斌;李鹏;;黄土高原草地土壤微量元素分布特征研究[J];水土保持学报;2010年05期
10 董国涛;罗格平;许文强;谌莉;;三工河流域下游绿洲土壤微量元素有效含量空间变异特征[J];中国沙漠;2010年04期
相关硕士学位论文 前3条
1 时伟伟;广西森林土壤养分空间变异性研究[D];江西农业大学;2013年
2 佟宝辉;吉林省玉米主产区土壤微量元素时空分布特征[D];吉林农业大学;2012年
3 努尔模达·达拉拜;黄土高原北部风沙区土壤中微量元素的含量变化研究[D];西北农林科技大学;2007年
,本文编号:2079412
本文链接:https://www.wllwen.com/kejilunwen/nykj/2079412.html