高光谱估算土壤有机质含量的波长变量筛选方法
[Abstract]:Because of the large amount of soil hyperspectral data, high wave band dimension, invalid spectral information, redundant and overlapping phenomena, the inversion model of soil organic matter content based on the whole wave band is unstable and the precision is difficult to improve. Therefore, it is one of the hotspots of soil hyperspectral research to explore the method of screening key wavelength variables and improve the performance of model prediction by filtering interference, redundancy and collinear information. In this paper, the indoor physical and chemical analysis, spectral measurement and treatment of soil samples in Jianghan Plain were carried out, and the invalid variables were eliminated by (uninformative variables elimination without information variable. The competitive adaptive reweighting algorithm (competitive adaptive reweighted sampling cars) is used to filter redundant variables, and the continuous projection algorithm (successive projections algorithm is used to eliminate collinear variables. The estimation model of soil organic matter content was established by partial least square regression (partial least squares regression), and the advantages and disadvantages of various methods were compared. Finally, the method system of selecting the key variables of soil hyperspectral data was constructed. The results show that the model accuracy of the SPA method is lower than that of the full-band method, and the modeling effect of the other six variable selection methods is better than that of the full-band method, and the car method is better than the UVE-SPA variable selection method among the three single variable selection methods. The relative analysis error (RPD) of the prediction set is 2.84. It was found that the PLSR model of soil organic matter content established by CARS-SPA method was the best, and 37 characteristic wavelengths were selected from 2 001 wavelengths. The determination coefficient R2 and the relative analysis error RPD of the model prediction set are 0.92n3.60, respectively. The selected band is only 1.85. CARS-SPA-PLSR model is simple, and the prediction effect is good. It can be used as an important method to estimate the soil organic matter content in this region. It can be used to guide the development of soil near-earth sensor equipment in the future.
【作者单位】: 华中师范大学地理过程分析与模拟湖北省重点实验室;华中师范大学城市与环境科学学院;华中师范大学湖北经济与社会发展研究院;
【基金】:国家自然科学基金项目(41401232;41271534) 中央高校基本科研业务费专项资金项目(CCNU15A05006;CCNU15ZD001)
【分类号】:S153.621;S127
【相似文献】
相关期刊论文 前10条
1 白丽;王进;蒋桂英;杨朋;孙蜀江;;干旱区基于高光谱的棉花遥感估产研究[J];中国农业科学;2008年08期
2 卢岩;郭斗斗;孙成明;刘涛;陈瑛瑛;武威;;基于高光谱的水稻土有机质含量估算研究[J];中国农学通报;2014年18期
3 江威;;武夷山地区土壤有机质高光谱模型建立与评价[J];安徽农业科学;2012年22期
4 徐明星;周生路;丁卫;吴绍华;吴巍;;苏北沿海滩涂地区土壤有机质含量的高光谱预测[J];农业工程学报;2011年02期
5 卢艳丽;白由路;杨俐苹;王红娟;孔庆波;;基于主成分回归分析的土壤有机质高光谱预测与模型验证[J];植物营养与肥料学报;2008年06期
6 卢艳丽;白由路;杨俐苹;王磊;王贺;;东北平原不同类型土壤有机质含量高光谱反演模型同质性研究[J];植物营养与肥料学报;2011年02期
7 彭杰;向红英;周清;张杨珠;王家强;庞新安;;土壤氧化铁的高光谱响应研究[J];光谱学与光谱分析;2013年02期
8 陈红艳;赵庚星;李希灿;朱西存;隋龙;王银娟;;基于小波变换的土壤有机质含量高光谱估测[J];应用生态学报;2011年11期
9 于士凯;姚艳敏;王德营;司海青;;基于高光谱的土壤有机质含量反演研究[J];中国农学通报;2013年23期
10 乔璐;陈立新;张杰;黄兰英;;哈尔滨市土壤有机质高光谱模型[J];东北林业大学学报;2010年07期
相关会议论文 前1条
1 王进;白丽;蒋贵英;杨朋;孙蜀江;;干旱区基于高光谱的棉花遥感估产研究[A];中国气象学会2008年年会卫星遥感应用技术与处理方法分会场论文集[C];2008年
相关硕士学位论文 前1条
1 吴斐;基于光谱反射率的耕地估产研究[D];华中师范大学;2011年
,本文编号:2133453
本文链接:https://www.wllwen.com/kejilunwen/nykj/2133453.html