当前位置:主页 > 科技论文 > 农业技术论文 >

基于遥感作物模型的长江中下游地区高温热害对一季稻产量的影响研究

发布时间:2018-08-02 11:04
【摘要】:长江中下游地区是中国十分重要的水稻生产基地,但该区域经常受到高温天气的影响,使水稻生长发育过程受到影响。本文利用遥感作物模型对长江中下游地区高温热害对一季稻产量的影响进行研究。首先,本文利用MODIS地表反射率数据及土地利用类型数据提取了长江中下游地区的一季稻种植面积,作为空间产量展示的基础;其次利用农业气象观测站点资料建立的关系式对已有的遥感作物模型进行了修改;再次从时间尺度和空间尺度分析了长江中下游地区的高温情况;最后结合修改后的模型模拟得到的产量和高温分布情况,分析了高温对水稻产量的影响。本文的主要结论有:(1)利用MODIS地表反射率数据及土地利用类型数据提取的长江中下游地区一季稻的面积与省级尺度的统计面积相比较,决定系数R2达到0.99,与县级尺度的统计面积相比较,决定系数R2达到0.8188,均通过了0.01的显著性检验;(2)利用改进后的遥感作物模型RS-P-YEC模拟2003-2012年的水稻单产,模型模拟的产量与县级统计产量相比较,决定系数R2达到0.5578,均方根误差为52.64kg/ha,平均相对误差为9%,表明改进后的模型能更准确的模拟受高温影响下的水稻产量;(3)通过高温日数的空间分布、年际变化特征、MK突变检验以及利用气候倾向率、EOF分析的模态时空变化特征可知,近30年中,长江中下游地区的高温日数呈现出增加的趋势,而且不存在突变年份。整个长江中下游地区的变化趋势基本一致,在空间上不存在着异常情况;(4)在高温对水稻产量分析中可知整个长江中下游地区的水稻减产率的各个区间比例与高温频次的各个区间比例有关,即高温频次在0-5区间与减产率在0-10%区间对应、高温频次在5-10区间与减产率在10-20%区间对应、高温频次在10-15区间与减产率在20-30%区间对应、高温频次在15-20区间与减产率在30-40%区间对应、高温频次大于20与减产率大于40%对应。当高温频次的各个区间比例增加时,对应的减产率的区间比例也会增加。
[Abstract]:The middle and lower reaches of the Yangtze River is an important rice production base in China, but the rice growth and development process is often affected by the high temperature weather in this region. In this paper, the effects of high temperature heat damage on the yield of single cropping rice in the middle and lower reaches of the Yangtze River were studied by using remote sensing crop model. Firstly, this paper uses MODIS surface reflectance data and land use type data to extract the rice planting area in the middle and lower reaches of the Yangtze River as the basis of spatial yield display. Secondly, the existing remote sensing crop models are modified by using the relationship established by the agrometeorological observation data, and the high temperature situation in the middle and lower reaches of the Yangtze River is analyzed from the time scale and the spatial scale. Finally, the effects of high temperature on rice yield were analyzed based on the simulated yield and high temperature distribution of the modified model. The main conclusions of this paper are as follows: (1) the area of rice in the middle and lower reaches of the Yangtze River is compared with the statistical area at provincial scale, which is extracted from the MODIS surface reflectance data and land use type data. Compared with the statistical area of county scale, the coefficient of determination R2 reached 0.8188, which passed the significant test of 0.01. (2) the improved remote sensing crop model RS-P-YEC was used to simulate the rice yield from 2003 to 2012. The output simulated by the model is compared with the statistical yield at the county level. The determination coefficient R2 is 0.5578, the root mean square error is 52.64 kg / ha, and the average relative error is 9, which indicates that the improved model can more accurately simulate the rice yield under the influence of high temperature. (3) the spatial distribution of the number of days under high temperature. The characteristics of interannual variation, MK mutation test and modal temporal and spatial variation of EOF analysis show that the number of high temperature days in the middle and lower reaches of the Yangtze River shows an increasing trend in the past 30 years, and there is no abrupt change in the past 30 years. The trend of change in the whole middle and lower reaches of the Yangtze River is basically the same. There is no abnormal situation in space. (4) in the analysis of rice yield at high temperature, it is known that the proportion of rice yield reduction in the whole middle and lower reaches of the Yangtze River is related to each interval proportion of high temperature frequency. That is, the high temperature frequency corresponds to the reduction rate in 0-10%, the high temperature frequency to 10-20%, the high temperature frequency to 20-30%, the high-temperature frequency to 30-40%. The frequency of high temperature is more than 20 and the yield of yield is more than 40%. When the proportion of each interval of high temperature frequency increases, the interval proportion of corresponding reduction rate will also increase.
【学位授予单位】:中国气象科学研究院
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:S511.41;S42;S127

【参考文献】

相关期刊论文 前6条

1 潘晓华;邓强辉;;作物收获指数的研究进展[J];江西农业大学学报;2007年01期

2 程向红;程林;查旭光;韩正英;;桐城单季稻高温热害调查及应对措施[J];农技服务;2009年08期

3 王培娟;谢东辉;张佳华;朱启疆;陈镜明;;基于过程模型的长白山自然保护区森林植被净第一性生产力空间尺度转换方法[J];生态学报;2007年08期

4 高建峰;姜小三;刘绍贵;潘剑君;;辅以ETM的MODIS水稻种植面积监测研究[J];土壤;2008年03期

5 周曙东;朱红根;;气候变化对中国南方水稻产量的经济影响及其适应策略[J];中国人口.资源与环境;2010年10期

6 冯险峰,刘高焕,陈述彭,周文佐;陆地生态系统净第一性生产力过程模型研究综述[J];自然资源学报;2004年03期



本文编号:2159222

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/nykj/2159222.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户91784***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com