当前位置:主页 > 科技论文 > 农业技术论文 >

河南省夏季土壤湿度反演模型研究

发布时间:2018-08-06 14:54
【摘要】:干旱灾害是一种在全球范围内频繁发生的复杂的自然灾害,对全球的自然生态环境和人类社会经济活动的影响巨大。因此干旱灾害一直是研究的热点之一。河南省受到季风影响,全年降水分布不均,在夏季受到干旱灾害影响频繁且严重。土壤湿度是干旱的重要评价指标之一,土壤湿度与各个因子之间有较强的非线性耦合关系,需要充分考虑影响监测的各个因子,建立一个满足实际需要的监测模型。本文将以河南省作为主要研究区域,利用2007-2012年夏季MODIS遥感数据,基于TVDI指数方法和神经网络算法两种方面对土壤湿度的反演模型进行研究,从而获得研究区域的干旱灾害动态监测模型。取得的主要研究成果如下:(1)利用MODIS数据、DEM和实测数据,基于TVDI指数方法和神经网络算法对土壤湿度进行反演,建立河南省夏季土壤湿度反演模型,获得土壤湿度高分辨率的空间分布。两个反演模型能客观反映土壤湿度空间分布的变化情况,但两种方法在反演值上有所出入,其中通过TVDI指数方法反演的土壤湿度值较小。(2)分析基于神经网络的反演模型和基于遥感指数的反演模型与实测土壤湿度之间的误差和相关性关系。发现结合土壤湿度影响因子的神经网络土壤湿度反演模型精度相对TVDI指数反演模型的精度更精确。说明算法模型能更好地描述土壤湿度的空间分布特征。(3)以基于神经网络构建的土壤湿度模型为基础,构建2012年河南省夏季干旱灾情等级分布图。结果表明,2012年夏季旱灾灾情较轻,其中6月灾情较为严重,8月较轻,7月几乎不发生干旱。而豫北、豫西和豫中地区的干旱发生频率较高。以上研究工作建立了一个结合土壤湿度影响因子的高分辨率的土壤湿度动态反演模型,实现土壤湿度高分辨率的精细化表达,达到监测研究区域内干旱灾害发展变化的目的。
[Abstract]:Drought disaster is a kind of complex natural disaster frequently occurring in the world, which has a great impact on the global natural ecological environment and the social and economic activities of human beings. Therefore, drought disaster has been one of the hotspots of research. Henan Province is affected by the monsoon, the precipitation is uneven in the whole year, and it is frequently and seriously affected by the drought disaster in summer. Soil moisture is one of the important evaluation indexes of drought. There is a strong nonlinear coupling relationship between soil moisture and various factors. It is necessary to fully consider the factors that affect the monitoring and establish a monitoring model to meet the actual needs. In this paper, Henan Province is taken as the main research area, using MODIS remote sensing data from 2007 to 2012, based on TVDI index method and neural network algorithm, the inversion model of soil moisture is studied. The dynamic monitoring model of drought disaster in the study area is obtained. The main research results are as follows: (1) based on MODIS data Dem and measured data, soil moisture inversion model in summer of Henan Province is established based on TVDI index method and neural network algorithm. The spatial distribution of soil moisture with high resolution was obtained. The two inversion models can objectively reflect the spatial distribution of soil moisture, but there are some differences between the two methods in the inversion value. Among them, the soil moisture value retrieved by TVDI exponent method is small. (2) the error and correlation between the inversion model based on neural network and the inversion model based on remote sensing index and the measured soil moisture are analyzed. It is found that the precision of the neural network model combined with the influence factors of soil moisture is more accurate than that of the TVDI exponent inversion model. It shows that the algorithm model can better describe the spatial distribution characteristics of soil moisture. (3) based on the soil moisture model based on neural network, the distribution map of summer drought disaster in Henan Province in 2012 is constructed. The results show that the drought in summer of 2012 is relatively light, in which June is more serious, August is lighter, and there is almost no drought in July. The drought frequency is higher in north Henan, western Henan and central Henan. In this paper, a dynamic inversion model of soil moisture with high resolution combined with the influence factors of soil moisture was established, which realized the fine expression of high resolution of soil moisture, and achieved the purpose of monitoring the development and change of drought disasters in the study area.
【学位授予单位】:南京信息工程大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S152.71;S423

【参考文献】

相关期刊论文 前10条

1 丁春晓;周汝良;叶江霞;张志勇;田圆;;地形起伏对陆地卫星的NDVI影响研究[J];林业资源管理;2016年04期

2 吴谦;王常明;王天佐;黄晓虎;张志敏;张兆楠;;路基边坡降雨试验及基于神经网络的水分场研究[J];中南大学学报(自然科学版);2016年04期

3 石玉;宫恒瑞;张旭;李聪;;风云三号温度植被指数反演土壤湿度研究[J];测绘科学;2015年11期

4 尤加俊;安如;;基于CCI和MODIS数据的淮河流域地表土壤湿度降尺度方法研究[J];测绘与空间地理信息;2015年02期

5 张清河;徐飞;邹启源;;微扰法结合最小二乘支持向量机反演土壤湿度[J];电波科学学报;2015年02期

6 李爽;宋小宁;王亚维;王睿馨;;基于AMSR-E数据的中国地区微波湿度指数研究[J];国土资源遥感;2015年01期

7 刘兴杰;岑添云;郑文书;米增强;;基于模糊粗糙集与改进聚类的神经网络风速预测[J];中国电机工程学报;2014年19期

8 鲍艳松;严婧;闵锦忠;王冬梅;李紫甜;李鑫川;;基于温度植被干旱指数的江苏淮北地区农业旱情监测[J];农业工程学报;2014年07期

9 董彦;林开平;黄小燕;;南海热带气旋大风的遗传-神经网络集合预报[J];气象研究与应用;2014年01期

10 陈祯;;不同土壤含水率、体积质量及光谱反射率的关系模型[J];农业工程学报;2012年04期

相关会议论文 前1条

1 辛景峰;付俊娥;;农业旱情遥感监测研究[A];全国旱情监测技术与抗旱减灾措施论文集[C];2009年

相关博士学位论文 前3条

1 李素芳;基于神经网络的无线通信算法研究[D];山东大学;2015年

2 杨娜;基于云参数干旱遥感监测模型与集合卡尔曼滤波的土壤湿度同化研究[D];武汉大学;2010年

3 林开平;人工神经网络的泛化性能与降水预报的应用研究[D];南京信息工程大学;2007年

相关硕士学位论文 前10条

1 万曙静;基于多源数据的土壤湿度提取方法研究[D];山东农业大学;2015年

2 丁智慧;基于MODIS数据土壤湿度反演研究[D];中国石油大学(华东);2014年

3 王君;基于MODIS产品的青海省干旱监测[D];中南大学;2014年

4 严婧;基于数据重建的土壤水分遥感监测系统研究[D];南京信息工程大学;2013年

5 唐田;基于AMSR-E和RBF神经网络的川中丘陵区土壤水分反演[D];四川农业大学;2013年

6 王春娟;基于BP神经网络的台风降雨预报研究[D];浙江师范大学;2013年

7 宋荣杰;基于遥感的旱区土壤湿度反演方法研究[D];西北农林科技大学;2013年

8 黄飞;基于AMSR-E和BP神经网络的川中丘陵区土壤水分反演[D];四川农业大学;2012年

9 胡玉琢;改进型灰色神经网络模型在水质预测中的应用[D];重庆大学;2010年

10 黄丽;BP神经网络算法改进及应用研究[D];重庆师范大学;2008年



本文编号:2168078

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/nykj/2168078.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户11b35***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com