基于高光谱数据的土壤有机质含量反演模型比较
[Abstract]:Taking Hengshan County of Shaanxi Province as the research area, three kinds of inversion models of soil organic matter content based on hyperspectral data were compared. The soil samples collected in Hengshan County were measured by ASD Field Spec FR ground object spectrometer and the content of soil organic matter was determined by potassium dichromate oxidation volumetric method. The first derivative spectrum is obtained by differential operation of reciprocal reflectance of original spectrum. The correlation between original spectral reflectance and soil organic matter content is analyzed respectively. The first derivative spectrum of the characteristic band with higher correlation coefficient r is obtained, and the multivariate linear stepwise regression (MLSR) model based on the first order derivative spectrum is established directly. At the same time, the first derivative spectra of these characteristic bands with high correlation coefficient are analyzed by principal component analysis (Principal component analysis,PCA). The BP neural network inversion model (PCA-BP) and the multivariate linear stepwise regression model (PCA-MLSR) are established by using the results of principal component analysis (PCA). The above three methods were used to invert the soil organic matter content, and the accuracy of the three inversion results was verified and compared. The experimental results show that, among the three models, the PCA-BP model based on principal component analysis (PCA) has the highest determining coefficient (R2) in soil organic matter content inversion. The root mean square error (RMS) is 0.893, the root mean square error (RMSE) is 0.118 5, the multivariate linear stepwise regression model based on the results of all principal component PCA analysis (R2 = 0.740 7), and the multivariate linear stepwise regression model based on the first derivative spectral reflectivity. The best inversion model R2 is only 0.689 9 and 0.171 0. It shows that the inversion accuracy of organic matter content in PCA-BP model is obviously higher than that in multivariate linear stepwise regression model, and multivariate stepwise regression is carried out by using all principal components. The inversion accuracy of organic matter content is better than that of multivariate stepwise regression with only the principal components whose cumulative variance contribution rate is more than 90%, and the content of soil organic matter can be retrieved better.
【作者单位】: 同济大学测绘与地理信息学院;山东农业大学信息科学与工程学院;
【基金】:上海市科学技术委员会科研计划项目(13231203602)
【分类号】:S153.621
【相似文献】
相关期刊论文 前5条
1 赵艳霞,秦军,周秀骥;遥感信息与棉花模型结合反演模型初始值和参数的方法研究[J];棉花学报;2005年05期
2 栾福明;张小雷;熊黑钢;王芳;张芳;;基于TM影像的荒漠-绿洲交错带土壤有机质含量反演模型[J];中国沙漠;2014年04期
3 吴明珠;李小梅;沙晋明;;亚热带土壤铬元素的高光谱响应和反演模型[J];光谱学与光谱分析;2014年06期
4 宋开山;刘殿伟;王宗明;吕冬梅;张柏;任春颖;杜嘉;;基于小波分析的玉米叶绿素a与LAI高光谱反演模型研究[J];农业系统科学与综合研究;2011年02期
5 ;[J];;年期
相关会议论文 前1条
1 王百合;刘代志;黄世奇;李义红;;高光谱遥感中的植被光谱特征分析及参量反演模型研究进展[A];国家安全地球物理丛书(八)——遥感地球物理与国家安全[C];2012年
相关博士学位论文 前1条
1 毛德强;地下水反演模型解的唯一性和高精度反演方法研究[D];中国地质大学(北京);2013年
相关硕士学位论文 前6条
1 杜志红;水稻叶绿素含量高光谱反演模型及尺度转换方法研究[D];中国地质大学(北京);2015年
2 牟蒙;基于高光谱遥感的翅碱蓬生物量反演模型研究[D];大连海洋大学;2016年
3 杨伊欣;‘新新2号’核桃坚果品质叶片光谱反演模型[D];新疆农业大学;2016年
4 任超;基于低相干相位显微镜细胞纳米结构参数的反演模型研究[D];重庆大学;2014年
5 邱冬梅;基于MODIS的主要积雪参数反演及其应用研究[D];新疆大学;2011年
6 苏艺;基于高光谱信息的橡胶小苗叶片磷素含量的反演[D];海南大学;2015年
,本文编号:2293721
本文链接:https://www.wllwen.com/kejilunwen/nykj/2293721.html