变换光谱数据对土壤氮素PLSR模型的影响研究
[Abstract]:Spectral data transformation plays an important role in eliminating background noise and extracting spectral features. It is a necessary step in the process of spectral data analysis. In order to study the effect of spectral transformation treatment on soil nitrogen PLSR model and select the best spectral transformation processing method, 15 typical spectral transformations were carried out for the original spectral data in this paper. By comparing the correlation between different transformation spectra and soil nitrogen, the accurate diagnosis of soil nitrogen was realized by PLSR, and the optimal spectral data transformation method was evaluated synthetically. The results showed that the correlation between the spectral transformation after differential treatment and soil nitrogen could be improved, especially when the formula (T8 T11) and logarithm (T6 T12) were used before differential treatment. Under the condition that the number of factor variables is less, the interpretation quantity of dependent variables reaches 98. Considering the correction of the model, the verification effect and the complexity of the model (the number of the best factor variables of the model), it is concluded that the first order differential transform (T8) of the spectral square root is the best algorithm for soil spectral transformation. The calibration model of soil nitrogen under this condition was shown as R2N 0.985N RMSEC 0.000132FnN 6, and the validation model was R2N 0.9853 RMSEV 0.000162. The results showed that the spectral data transformation based on T8 could realize the spectral estimation of soil nitrogen under this experimental condition. In addition, the first order differential (T9) of the original spectrum, the first order differential of logarithmic and logarithmic inverse (T6T7) and the second order differential of square root and logarithm (T11T12) can be considered as spectral data transformation methods. The results can provide technical reference for soil nitrogen estimation and spectral data preprocessing.
【作者单位】: 山西农业大学旱作农业工程研究所;
【基金】:国家自然科学基金项目(31371572;31201168) 山西省科学技术发展计划项目(201603D221037-3) 山西省归国人员重点资助项目(2014-重点4) 山西省科技攻关项目(20110311038) 山西省青年基金项目(2012021023-5)
【分类号】:S151.93
【相似文献】
相关期刊论文 前7条
1 邢肖毅;黄懿梅;安韶山;张宏;;黄土高原沟壑区森林带不同植物群落土壤氮素含量及其转化[J];生态学报;2013年22期
2 黄容;潘开文;王进闯;李伟;;岷江上游半干旱河谷区3种林型土壤氮素的比较[J];生态学报;2010年05期
3 吴雪仙;陈林武;宫渊波;;广元市碗厂沟不同林地类型土壤氮素动态变化分析[J];四川林业科技;2007年05期
4 董贵青;张养安;;黄土丘陵沟壑区不同植被覆盖对土壤氮素的影响[J];水土保持研究;2009年05期
5 陈伏生,曾德慧,何兴元;森林土壤氮素的转化与循环[J];生态学杂志;2004年05期
6 陈伏生;曾德慧;范志平;陈广生;Singh A.N.;;沙地不同树种人工林土壤氮素矿化过程及其有效性[J];生态学报;2006年02期
7 ;[J];;年期
相关会议论文 前2条
1 陈伏生;余明泉;胡小飞;;城乡梯度森林土壤氮素矿化变异性[A];中国植物学会七十五周年年会论文摘要汇编(1933-2008)[C];2008年
2 朱兆良;;我国土壤氮素研究中的某些进展[A];中国土壤学会第十次全国会员代表大会暨第五届海峡两岸土壤肥料学术交流研讨会论文集(面向农业与环境的土壤科学综述篇)[C];2004年
相关博士学位论文 前3条
1 梁东丽;黄土性土壤氮素氧化亚氮气态损失及其影响因素的研究[D];西北农林科技大学;2003年
2 黄志珍;农田土壤氮素平衡动态模拟模型研制与SISNDB信息系统开发[D];浙江大学;2005年
3 李菊梅;土壤氮素矿化特性的研究[D];西北农林科技大学;2001年
相关硕士学位论文 前6条
1 张春娜;中国陆地土壤氮库研究[D];西南农业大学;2004年
2 刘健;三种质地土壤氮素淋溶规律研究[D];北京林业大学;2010年
3 陈小红;退耕还林地土壤氮素动态研究[D];四川农业大学;2002年
4 韩敬;川中丘区村级景观结构与土壤氮素空间分布的关系研究[D];四川农业大学;2004年
5 王巧红;四川广元市不同植被恢复类型土壤氮素动态研究[D];四川农业大学;2005年
6 张植桢;紫外光对土壤氮素转化影响的研究[D];华中农业大学;2010年
,本文编号:2315310
本文链接:https://www.wllwen.com/kejilunwen/nykj/2315310.html