基于开花期卫星遥感数据的大田小麦估产方法比较
[Abstract]:[objective] Satellite remote sensing has the advantages of wide coverage, fast acquisition speed, large amount of information, strong dynamic and so on. It can obtain crop yield information accurately and timely, and reflect the spatial variation trend of crop yield. Crop yield estimation by remote sensing has become a hotspot in modern agricultural production. By improving the modeling method of crop yield estimation by remote sensing, the precision of crop yield estimation can be further improved, which can provide a visual view for the macroscopic understanding of crop yield formation and change trend in different regions. [methods] based on the fixed-point observation experiments in five counties of Dafeng, Xinghua, Jiangyan, Taixing and Yizheng in Jiangsu Province from 2011-2012, the HJ-1A/1B images of domestic satellite products were used as remote sensing data. The quantitative analysis of satellite remote sensing vegetation index, key growth index and harvest yield was carried out in the field location observation area during the flowering period of wheat (Triticum aestivum L.). Through quantitative analysis of yield, wheat growth index and vegetation index, the mechanism and repeatability of remote sensing inversion are further enhanced. The correlation analysis between satellite remote sensing variables and wheat yield was taken as the direct modeling method for estimating yield by remote sensing, while indirect modeling method was used to select remote sensing variables with good correlation with yield and main seedling condition indexes with good correlation with remote sensing variables. Based on the sensitive remote sensing variables obtained by screening, the corresponding wheat growth index was first monitored, and the quantitative relationship between the wheat growth index and the yield was combined, and then an indirect yield estimation model was established, which was used to estimate the yield indirectly by remote sensing. By using direct and indirect modeling methods, sensitive satellite remote sensing variables for estimating yield are screened based on the principle of maximum correlation. Based on the experimental data in 2012, the correlation between seedling growth index, yield and satellite remote sensing variables in flowering stage of wheat was analyzed by linear regression analysis. The field wheat yield estimation models based on remote sensing vegetation index were constructed, and the model was analyzed together with the measured results on the ground. Taking the experimental data of 2011 as the validation sample, the estimation accuracy of the two models is verified and compared with the evaluation index fitting (R2) and root mean square error (RMSE),). [results] based on the difference vegetation index (difference vegetation index,DVI) and the ratio vegetation index (ratio vegetation index,RVI), the root mean square error (root mean square error,) of the single factor direct yield estimation model was obtained. RMSE) for 918 kg hm-2 and 1 399.5 kg hm-2, using DVI and RVI remote sensing variables to construct a bivariate yield estimation model with a RMSE of 1 036.5 kg hm-2, to normalize the vegetation index (normalized difference vegetation index, The RMSE of the indirect yield estimation model based on NDVI) and leaf nitrogen accumulation was 805.5 kg hm-2, which indicated that the HJ-1A/1B image at flowering stage was feasible and accurate in estimating wheat regional yield. By comparison, the precision of indirect yield estimation model based on NDVI and leaf nitrogen accumulation was significantly higher than that of direct yield estimation model. Compared with DVI direct yield estimation model, RMSE decreased by 112.5 kg hm-2,. Compared with RVI direct yield estimation model, RMSE decreased by 594 kg hm-2, compared with two-factor model RMSE by 231 kg hm-2. [conclusion] domestic satellite HJ-1A/B can better meet the requirement of wheat yield estimation. The indirect method is better than the direct method in establishing crop yield estimation model by remote sensing. The results provide a new way to estimate wheat yield more accurately by remote sensing.
【作者单位】: 扬州大学江苏省作物遗传生理国家重点实验室培育点/粮食作物现代产业技术协同创新中心;
【基金】:国家自然科学基金(41271415) 江苏高校优势学科建设工程(PAPD) 江苏省农业自主创新资金(CX(16)1042) 苏州市农业科技创新项目(SNG201643) 扬州市科技计划(YZ2016242) 扬州大学科技创新团队
【分类号】:S127;S512.1
【相似文献】
相关期刊论文 前10条
1 武晋雯;纪瑞鹏;张玉书;杨素英;;辽宁省耕地植被指数变化特征分析[J];气象科学;2006年03期
2 陈乾;用植被指数监测干旱并估计冬麦产量[J];遥感技术与应用;1994年03期
3 孙华生;徐爱功;林卉;张连蓬;;基于不同算法的时间序列植被指数去噪效果分析[J];江苏农业科学;2012年05期
4 李春强;李红军;;TVDI在冬小麦春季干旱监测中的应用[J];遥感技术与应用;2008年02期
5 廖钦洪;张东彦;王纪华;杨贵军;杨浩;Coburn Craig;Wong Zhijie;王大成;;基于多角度成像数据的新型植被指数构建与叶绿素含量估算[J];光谱学与光谱分析;2014年06期
6 卫炜;吴文斌;李正国;杨鹏;胡琼;周清波;;时间序列植被指数重构方法比对研究[J];中国农业资源与区划;2014年01期
7 王鹏新,龚健雅,李小文,王锦地;基于植被指数和土地表面温度的干旱监测模型[J];地球科学进展;2003年04期
8 邱庆伦,赵鸿燕,郭剑,宋福,吴玉珍;遥感植被指数在农业生态环境监测中的应用[J];农机化研究;2004年06期
9 高闪闪;陈仁喜;;适于ALOS图像植被信息提取的新植被指数[J];国土资源遥感;2013年04期
10 朱凌红;周澎;王忠民;邵志刚;;高光谱数据与叶绿素含量及植被指数的相关性研究进展[J];内蒙古民族大学学报(自然科学版);2014年01期
相关会议论文 前3条
1 付卓;王锦地;施建成;宋金玲;靳华安;张立新;张钟军;赵少杰;陈柏松;;微波植被指数与光学植被指数在地面尺度上的关系研究[A];遥感定量反演算法研讨会摘要集[C];2010年
2 肖乾广;肖岚;李亚君;;EOS/MODIS,FY-1D/MVISR,NOAA/AVHRR的归一化植被指数的同化研究[A];全国国土资源与环境遥感应用技术研讨会论文集[C];2009年
3 李进文;钟儒祥;赵文化;;基于MODIS植被指数的广东省农业生态分析[A];中国气象学会2006年年会“卫星遥感技术进展及应用”分会场论文集[C];2006年
相关博士学位论文 前1条
1 卫炜;MODIS双星数据协同的耕地物候参数提取方法研究[D];中国农业科学院;2015年
相关硕士学位论文 前10条
1 刘吉凯;基于HJ卫星数据的甘蔗长势监测与估产研究[D];南京信息工程大学;2015年
2 胡文;黑龙江省雹灾遥感监测及时空特征分析[D];东北农业大学;2015年
3 吴明业;基于TVDI的土壤干旱遥感监测研究及验证[D];安徽农业大学;2014年
4 王亚楠;基于涡度相关的农田碳通量及固碳能力遥感监测[D];河南理工大学;2015年
5 王渊博;基于遥感信息的农作物生物质可获取量评估及空间分布研究[D];西南交通大学;2016年
6 李明君;基于冬小麦前期光谱信息的播期遥感监测研究[D];西安科技大学;2015年
7 张菁;不同磷利用效率基因型水稻的高光谱反射表型量化的初步研究[D];浙江大学;2016年
8 杨昕;不同遥感植被指数组合模式监测小麦主要苗情参数研究[D];扬州大学;2015年
9 谢小燕;基于多源遥感的枯枝落叶层盖度反演研究[D];西北大学;2016年
10 罗骏飞;CGMD302作物生长监测诊断仪的测试与评价[D];南京农业大学;2015年
,本文编号:2335841
本文链接:https://www.wllwen.com/kejilunwen/nykj/2335841.html