当前位置:主页 > 科技论文 > 农业技术论文 >

不同经营模式对毛竹林土壤固氮菌群落结构和丰度的影响

发布时间:2019-01-07 11:08
【摘要】:毛竹(Phyllostachys pubescens)又称楠竹,是中国分布最广、面积最大的主要经济竹种,截至2013年,我国毛竹林的面积为443万公顷,目前生产上主要采用粗放和集约经营2种模式。毛竹是喜氮植物,生物固氮是土壤氮素的重要来源,但对人为干扰较为敏感。本研究分别采集5个不同经营时间的粗放经营和集约经营毛竹林表层(0~20 cm)和表下层(20~40 cm)土壤,应用PCR-DGGE和荧光定量PCR方法研究了不同经营模式毛竹林土壤固氮菌群落结构和丰度的变化,并利用冗余分析(RDA)研究影响土壤固氮菌群落的主要环境因素,旨在揭示毛竹纯林土壤固氮菌群落结构特征的影响及其演变规律。结果如下:粗放经营毛竹林。种植时间分别为5年(5a)、9年(9a)、15年(15a)和18年(18a)粗放经营毛竹林,以立地条件相似的天然马尾松林为对照(CK)。(1)表层(0~20 cm)土壤固氮菌群落Shannon多样性指数在马尾松林改造成毛竹林5年后均明显提高,而随着栽培年限的延长逐渐降低,但仍高于对照。主成分分析(PCA)表明,不同栽培年限毛竹林地土壤固氮微生物群落组成发生了较大变化,5a和9a样品分别与对照在第一主成分和第二主成分上差异明显,而15a和18a样品与对照差异逐渐降低,统计分析表明不同处理之间差异显著(r=0.901,p=0.001)。马尾松林改造成毛竹林后,土壤固氮菌nif H基因丰度明显提高,表现为5a最高,至9a时又急剧降低,随后逐渐稳定。冗余分析(RDA)结果表明,不同栽培年限毛竹林地土壤p H,有效磷、有机质和有效钾含量的变化是影响土壤固氮菌群落结构变异的主要因素;(2)表下层20~40 cm土壤固氮菌群落的变化规律与表层(0~20 cm)相似,只是多样性和丰度的最大值出现在15a处理。表层土壤固氮菌nif H基因丰度多于表下层;RDA分析结果同时表明速效钾、有效磷、碱解氮、硝态氮和有机质显著影响固氮菌。长期集约经营毛竹林。选择了不施肥(CK)和集约经营10年(10a)、15年(15a)、20年(20a)、25(25a)年毛竹林土壤。(1)集约经营10年时表层(0~20 cm)土壤固氮菌群落结构与对照(CK)差异不大,持续到15a和20a时则发生了明显变化,而到25a时有所缓和。固氮菌多样性指数和nif H基因丰度均呈现先减少后增加的趋势,经营15a时达到最小值。冗余分析表明表层(0~20 cm)土壤有效磷、土壤速效钾、硝态氮和水解氮的含量与固氮菌群落结构的变化具有较强的相关性,但未达显著水平,它们合计解释了31%的样品总变异;而表下层(20~40 cm)土壤p H、有机质、硝态氮和碱解氮含量的变化是影响土壤固氮菌群落结构变异的主要因素,且达显著水平。短期集约经营毛竹林。采集集约经营时间分别为0年(CK)、1年(1a)和7年(7a)的毛竹林土壤。集约经营1a毛竹林土壤固氮菌的多样性大于7a毛竹林,且集约经营对毛竹林表层土壤固氮菌的影响大于表下层;随着集约经营年限的增加,表层土壤固氮菌nif H基因丰度整体呈先下降后上升的趋势,而表下层土壤固氮菌nif H丰度的变化与之相反。
[Abstract]:Pyllostachys pubescens, also known as Nangzhu, is the main economic bamboo species with the largest distribution and the largest area in China. As of 2013, the area of the bamboo forest in China is 4.43 million hectares, and the current production mainly adopts two modes of extensive and intensive operation. Phyllostachys pubescens is a nitrogen plant, and the biological nitrogen fixation is an important source of soil nitrogen, but it is more sensitive to human disturbance. The structure and abundance of nitrogen-fixing bacteria in different operating modes were studied by PCR-DGGE and fluorescence quantitative PCR. The main environmental factors of the nitrogen-fixing bacteria community in the soil were studied by the RDA method, and the effects of the structure of the nitrogen-fixing bacteria in the soil of the pure forest of Phyllostachys pubescens were studied. The results are as follows: the crude bamboo forest is put into operation. The planting time was 5 years (5a), 9 years (9a), 15 years (15a) and 18 years (18a). (1) The Shannon diversity index of the nitrogen-fixing bacteria community in the surface layer (0-20 cm) was obviously improved after 5 years of transformation of the Pinus massoniana forest into the bamboo forest, but with the increase of the year of cultivation, it was still higher than that of the control. The principal component analysis (PCA) indicated that the composition of the soil-fixing microbial community in the soil with different cultivation years has changed greatly, and the samples of 5a and 9a are obviously different from the control in the first main component and the second main component, and the difference of the 15a and 18a sample and the control difference is gradually reduced, The statistical analysis indicated that the difference between different treatments was significant (r = 0.901, p = 0.001). After the transformation of Pinus massoniana forest into the bamboo forest, the abundance of the nif H gene of the soil of the soil is obviously improved, the expression is the highest, and the expression of the nitrogen-fixing bacteria nif H is up to 9a, and then is gradually stabilized. The results of RDA show that the change of soil p H, effective phosphorus, organic matter and effective potassium in different cultivation years is the main factor affecting the structure variation of the nitrogen-fixing bacteria in the soil. (2) The variation law of the nitrogen-fixing bacteria community in the lower layer of the table was similar to that of the surface layer (0-20 cm), but the maximum value of the diversity and abundance appeared in the 15a treatment. The Nif H gene abundance in the surface soil is more abundant than that of the lower layer; the results of the RDA analysis show that the available potassium, effective phosphorus, alkali and nitrogen, nitrate nitrogen and organic matter have a significant effect on the nitrogen-fixing bacteria. Long-term intensive management of the bamboo forest. Non-fertilization (CK) and intensive management for 10 years (10a), 15 years (15a), 20 years (20a) and 25 (25a) were selected. (1) The structure of the nitrogen-fixing bacteria in the surface layer (0-20 cm) and the control (CK) of the surface layer (0-20 cm) were not large when the intensive operation was used for 10 years, and the difference between the nitrogen-fixing bacteria community structure and the control (CK) of the soil continued to 15a and 20a. The diversity index of the nitrogen-fixing bacteria and the abundance of the nif H gene both show a tendency to increase after the first reduction, and the minimum value is reached at the time of the operation of the operation 15a. The redundant analysis indicated that the content of available P, available K, N and N in the surface of the surface layer (0-20 cm) had a strong correlation with the change of the nitrogen-fixing bacteria community structure, but did not reach a significant level, and they accounted for 31% of the total variation of the sample. The changes of the content of p H, organic matter, nitrate nitrogen and alkali in the lower layer (20 ~ 40 cm) in the lower layer (20 ~ 40 cm) are the main factors that affect the structure variation of the nitrogen-fixing bacteria in the soil and reach a significant level. Short-term intensive management of the bamboo forest. The intensive operation time was 0 years (CK), 1 year (1a) and 7 years (7a). In the intensive management, the diversity of the nitrogen-fixing bacteria in the soil of the Phyllostachys pubescens forest is greater than that of the bamboo forest, and the effect of intensive management on the nitrogen-fixing bacteria of the surface soil of the bamboo forest is larger than that of the lower layer of the table; with the increase of the intensive operation period, the abundance of the nif H gene of the surface soil nitrogen-fixing bacteria is decreased firstly and then rises, The change of the nif H abundance of the nitrogen-fixing bacteria in the lower-layer soil is the opposite.
【学位授予单位】:浙江农林大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:S795.7;S714.3

【相似文献】

相关期刊论文 前10条

1 梁仰贞;扩大毛竹林妙法──竹鞭诱导[J];植物杂志;1997年06期

2 何东进,洪伟,吴承祯;毛竹林各组分能量估算模型的研究[J];应用与环境生物学报;2000年05期

3 郑成洋,何建源,罗春茂,方燕鸿;不同经营强度条件下毛竹林植物物种多样性的变化[J];生态学杂志;2003年06期

4 尤添革,林秀琴;毛竹林的连续型直径分布变化方程[J];生物数学学报;2004年04期

5 南平;;冻害后毛竹林管理要点[J];农家之友;2008年03期

6 彭九生;程平;曾庆南;;江西毛竹林冰压灾害后恢复重建技术措施与建议[J];世界竹藤通讯;2008年02期

7 邓居松;严伍明;闵登科;;江西奉新毛竹林灾后重建与恢复技术规程[J];世界竹藤通讯;2008年03期

8 杨亮;彭鸿;;毛竹林可持续生态经营的措施[J];民营科技;2011年12期

9 刘文静;江桂兰;;关于对毛竹林喷滴灌溉的技术分析[J];民营科技;2011年11期

10 周慧;胡志红;;喷灌毛竹林技术应用与分析[J];民营科技;2011年11期

相关会议论文 前10条

1 汤孟平;;基于相邻网格调查的近自然毛竹林结构特征研究[A];第二届中国林业学术大会——S3 森林经理与林业信息化的新使命论文集[C];2009年

2 杨清平;;毛竹林理水固土功能评述[A];中国林学会首届竹业学术大会论文集[C];2004年

3 郑金福;占拥法;兰红星;董志燕;;低产毛竹林改造技术[A];第二届浙江中西部科技论坛论文集(第一卷)[C];2005年

4 高志勤;;毛竹林分土壤速效养分的变化特征[A];节能环保 和谐发展——2007中国科协年会论文集(三)[C];2007年

5 刘广路;范少辉;官凤英;杜满义;陈孝丑;;不同劈草时间毛竹林生产力及土壤变化特征[A];第九届中国林业青年学术年会论文摘要集[C];2010年

6 肖复明;熊彩云;张小军;漆良华;徐海宁;章挺;;江西安福林区毛竹林群落呼吸量测定研究[A];2010中国科协年会第五分会场全球气候变化与碳汇林业学术研讨会优秀论文集[C];2010年

7 邱永华;赖根伟;谢永水;程筵寿;;毛竹林生态经营措施探讨[A];浙江省第二届林业科技周科技与林业产业论文集[C];2005年

8 邱永华;石兴华;叶青;张文斌;黄鄸根;;毛竹林可持续生态经营措施探讨[A];第三届浙江中西部科技论坛论文集(第三卷 林业分卷)[C];2006年

9 顾小平;吴晓丽;汪阳东;;毛竹林氮素营养诊断的研究[A];中国林学会首届竹业学术大会论文集[C];2004年

10 高志勤;;生态经营毛竹林的土壤质量与水文功能初探[A];第二届中国林业学术大会——S4 人工林培育理论与技术论文集[C];2009年

相关重要报纸文章 前10条

1 记者 张健康 通讯员 杨健;湖州创新毛竹林储水自灌溉新技术[N];中国绿色时报;2012年

2 江西省井冈山市林业局 朱才熙;毛竹林施肥两法[N];江苏科技报;2000年

3 游德福;残次毛竹林改造八举措[N];云南科技报;2005年

4 通讯员 姚德延邋季夏梅;庆元陈村村干部顺民意办实事[N];丽水日报;2007年

5 沈芸;毛竹林变成了“金竹林”[N];宜兴日报;2007年

6 徐红波;永修受冻毛竹林技术恢复生机盎然[N];中国绿色时报;2008年

7 记者 叶尚蓉 通讯员 潘至秦;康庄路盘活2000多亩毛竹林[N];丽水日报;2011年

8 朱才熙;毛竹林忌水平带状条垦[N];湖南科技报;2002年

9 县报道组 杨道敏 通讯员 卢成桂 赵思;苍南兴建五千亩毛竹林基地[N];浙江日报;2001年

10 凉军;毛竹林的冬季管理[N];中国特产报;2001年

相关博士学位论文 前10条

1 刘广路;毛竹林长期生产力保持机制研究[D];中国林业科学研究院;2009年

2 陈双林;海拔对毛竹林结构及生理生态学特性的影响研究[D];南京林业大学;2009年

3 王宏;毛竹林生态型模式施肥应用研究[D];北京林业大学;2011年

4 郭晓敏;毛竹林平衡施肥及营养管理研究[D];南京林业大学;2003年

5 余林;皖南毛竹林密度效应研究[D];中国林业科学研究院;2011年

6 吴志民;毛竹林植物多样性与保护策略研究[D];中国林业科学研究院;2012年

7 肖复明;毛竹林生态系统碳平衡特征的研究[D];中国林业科学研究院;2007年

8 封焕英;毛竹林健康评价指标体系构建及实证研究[D];中国林业科学研究院;2014年

9 刘西军;亚热带北缘毛竹林群落生产力、有机碳及养分动态[D];安徽农业大学;2011年

10 周国模;毛竹林生态系统中碳储量、固定及其分配与分布的研究[D];浙江大学;2006年

相关硕士学位论文 前10条

1 朱琳琳;安徽泾县毛竹林凋落物产量及土壤呼吸特征[D];安徽农业大学;2014年

2 沈秋兰;毛竹林土壤氨氧化和固氮微生物特征及其演变规律[D];浙江农林大学;2015年

3 何冬华;不同经营模式对毛竹林土壤固氮菌群落结构和丰度的影响[D];浙江农林大学;2015年

4 金晓春;施肥对毛竹林形态结构及光合能力的影响[D];浙江林学院;2009年

5 孙刚;安徽肖坑天然毛竹林生产力及养分特征的研究[D];安徽农业大学;2009年

6 章朝聪;福建省毛竹林生态与经济价值评价[D];南京林业大学;2010年

7 范渭亮;毛竹林参数遥感定量反演与软件实现[D];浙江农林大学;2010年

8 杨洁;不同环境梯度毛竹林群落结构及组成分析[D];北京林业大学;2011年

9 朱渝芬;毛竹林水文生态功能及其土壤肥力变化研究[D];南京林业大学;2007年

10 陈荣;毛竹林资源资产评估研究[D];福建农林大学;2012年



本文编号:2403586

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/nykj/2403586.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户edd9f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com