当前位置:主页 > 科技论文 > 农业技术论文 >

六道沟小流域地形序列土壤碳剖面分布特征及影响因素

发布时间:2019-03-14 17:18
【摘要】:为了更好地理解黄土高原植被恢复与生态重建过程对土壤碳循环过程的影响,研究选取位于黄土高原六道沟小流域的典型土壤地形序列(东北坡NE序列,西坡W序列),分析了不同坡向间及同一坡向内随植被类型变化土壤有机碳和无机碳的剖面分布特征及其影响因素。结果表明:六道沟小流域地形序列土壤有机碳含量在0—50cm土层内随土层深度增加而显著降低,50cm土层以下基本趋于稳定,且剖面上层(0—50cm)有机碳含量显著高于剖面下层(50—200cm,p0.05),但在同一深度土层(0—50,50—200,0—200cm)不同坡向林地和草地土壤有机碳平均含量均没有显著差异(p0.05)。与有机碳相比,无机碳含量相对较高并且主要在剖面下部(50cm以下)不同深度土层富集。NE序列林地和草地剖面无机碳平均含量接近(p0.05),而W序列林地剖面无机碳平均含量显著高于草地(p0.05);不同坡向草地剖面无机碳平均含量无显著差异(p0.05),但不同坡向林地剖面无机碳平均含量表现为W序列显著高于NE序列(p0.05)。0—50cm土层有机碳含量与pH、容重和土壤含水量均呈极显著负相关关系,而与土壤总孔隙度呈极显著正相关关系;50—150cm土层无机碳含量与pH和土壤总孔隙度均呈极显著负相关关系,而与容重、黏粒含量和土壤含水量均呈极显著正相关关系。NE序列和W序列2 m土体总碳密度相当,分别为15.2~47.4kg/m~2和18.3~51.3kg/m~2,其中无机碳密度占78%~94%,1—2m土层总碳密度占2m土体总碳密度的35%~74%。若只考虑土壤有机碳库或只考虑浅层1m土壤碳库,六道沟小流域2m土体总碳储量平均将被低估88%和51%。
[Abstract]:In order to better understand the effects of vegetation restoration and ecological reconstruction on soil carbon cycle in the Loess Plateau, the typical soil topography series (NE sequence on northeast slope and W sequence on west slope) located in Liudaogou watershed of Loess Plateau were selected. The distribution characteristics of soil organic carbon and inorganic carbon along with vegetation types and the influencing factors of soil organic carbon and inorganic carbon in different slope directions and in the same slope direction were analyzed. The results showed that the content of soil organic carbon decreased significantly with the increase of soil depth in the 0-50cm soil layer, and the soil organic carbon content in the terrain sequence of Liudaogou small watershed decreased significantly with the increase of the depth of the soil layer. The organic carbon content in the upper layer of the profile (0-50cm) was significantly higher than that in the lower layer of the profile (50 脳 200 cm, p0.05). However, there was no significant difference in soil organic carbon content between forestland and grassland in the same depth soil layer (0 ~ 50, 50 ~ 200, 0 ~ 200 cm) (p0.05). Compared with organic carbon, the inorganic carbon content was relatively higher and enriched mainly in different depths of the lower part of the profile (below 50cm). The average content of inorganic carbon in the NE sequence woodland and grassland section was close to that in the grassland section (p0.05). The average content of inorganic carbon in W sequence woodland profile was significantly higher than that in grassland (p0.05). There was no significant difference in the average content of inorganic carbon in different slope grassland profile (p0.05), but the average content of inorganic carbon in woodland profile with different slope direction was significantly higher than that in NE sequence (p0.05). The organic carbon content in 0-50cm soil layer and pH, were significantly higher than those in different slope-orientation woodland profile (p0.05). There was a very significant negative correlation between bulk density and soil water content, but a very significant positive correlation between bulk density and soil total porosity. The inorganic carbon content in 50-150cm soil layer was negatively correlated with pH and soil total porosity, but positively correlated with bulk density, clay content and soil water content. The soil total carbon density of NE sequence and W series was similar to that of 2 m soil mass in NE series and W series, and there was a significant positive correlation between inorganic carbon content and soil bulk density, clay content and soil moisture content. The density of inorganic carbon is 78% ~ 94%, and the total carbon density of 1 ~ 2m soil layer is 35% ~ 74% of the total carbon density of 2m soil. The results are as follows: 15.2~47.4kg/m~2 and 18.3 ~ 51.3 kg 路kg ~ (- 1) 路m ~ (- 1) 路m ~ (- 1) respectively. If only soil organic carbon pool or shallow 1m soil carbon pool is considered, the average total carbon storage of 2m soil in Liudaogou small watershed will be underestimated by 88% and 51% on average.
【作者单位】: 西北农林科技大学资源环境学院;中国科学院水利部水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室;中国科学院地理科学与资源研究所中国科学院生态系统网络观测与模拟重点实验室;中国科学院大学资源与环境学院;
【基金】:国家自然科学基金青年基金项目(41601221) 国家重点研发计划重点专项(2016YFC0501605) 中国科学院水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室开放基金项目(A314021402-1602)
【分类号】:S153.6

【相似文献】

相关期刊论文 前10条

1 吴蔚东,黄春昌,王景明,陈淑珍,徐琴珠;江西省主要林型下土壤有机质及N素的状况与剖面分布[J];江西农业大学学报;1997年03期

2 李娜;韩晓日;杨劲峰;刘宁;李巧宁;房大伟;;长期施肥对棕壤矿物吸附点位钾有效性及其剖面分布的影响[J];植物营养与肥料学报;2012年06期

3 屈凡柱;于君宝;孟灵;徐刚;;黄河三角洲滨海湿地碱蓬群落土壤树脂磷测定及剖面分布特征[J];水土保持学报;2010年06期

4 王玉,张一平,郑继勇,张建军;饱和流运移土壤溶质剖面分布研究[J];西北农业大学学报;2000年06期

5 贾恒义,雍绍萍,,田积莹;X土非代换性钾剖面分布模型与系统分类探讨[J];水土保持通报;1994年03期

6 谢育平;周舟;金一鸣;;长期施用畜禽粪便稻田土壤氮素养分的剖面分布特征研究[J];安徽农业科学;2010年02期

7 杨继松;于君宝;刘景双;王金达;;三江平原典型湿地土壤腐殖质的剖面分布及其组成特征[J];土壤通报;2006年05期

8 邱亚群;甘国娟;刘伟;刘妍;侯洪波;李裕元;彭佩钦;;湖南典型土壤磷素剖面分布特征及其流失风险[J];中国农学通报;2012年08期

9 姜勇,张玉革,梁文举,闻大中;潮棕壤不同利用方式有机碳剖面分布及碳储量[J];中国农业科学;2005年03期

10 盛浩;周萍;袁红;廖超林;黄运湘;周清;张杨珠;;亚热带不同稻田土壤微生物生物量碳的剖面分布特征[J];环境科学;2013年04期

相关硕士学位论文 前3条

1 陈伟伟;辽宁滨海盐渍型水稻土耕层状况及不同组分有机碳的剖面分布[D];沈阳农业大学;2016年

2 谢林花;长期不同施肥对石灰性土壤磷形态转化及剖面分布的影响[D];西北农林科技大学;2001年

3 席春艳;不同施氮水平对免耕农田土壤氮素剖面分布的影响[D];甘肃农业大学;2012年



本文编号:2440190

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/nykj/2440190.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户2488a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com