基于SAR遥感的北方旱地秋收作物识别研究
[Abstract]:In the key period of autumn crop growth in the north of China, cloud and rain weather have great influence on crop growth, so it is very necessary to use radar remote sensing to identify crops in drylands because it is difficult to obtain optical remote sensing data in time and effectively. In this paper, Hengshui City, Hebei Province is chosen as the study area, 6-phase RADARAST-2 polarimetric images are selected as the data source, and the classification method is the random forest method. Firstly, by comparing the results of different interphase combinations, the optimal identification time phase and combination mode of typical autumn harvest crops (maize, cotton) in the study area were optimized. Secondly, we extract the backscattering information, texture information and polarization decomposition information of the optimal identification phase, and evaluate the importance of random forest algorithm to the variables according to the results of the combination of the information and the random forest algorithm. In this paper, the importance of the above three parts of information is evaluated. The results showed that when using SAR to identify the crops in dry land, we should pay more attention to the early phase of crop growth, in which maize could get more than 90% high precision under the single phase on June 27. The cotton area is small and the block is broken, but through the combination of June 3 and June 27, more than 70% precision has been obtained. Polarization information plays an important role in maize recognition. The polarization variable mainly increases the separability of maize and construction land, and the precision is improved by 7% compared with the classification of backscatter information. Similarly, the addition of texture information and polarization decomposition information also increased the accuracy of cotton by 3%. Finally, using the stochastic forest algorithm to evaluate the importance of variables, the five most important variables for maize identification are selected, which are: VH,Alpha,Yamaguchi4-Odd,Freeman-Vol and Mean (HV). This study uses radar data to identify dryland crops, validates the ability of radar images to identify dryland autumn crops, not only ensures the independence of data acquisition and weather conditions, but also relies on the unique data acquisition method of SAR. It provides a supplement to the optical data.
【作者单位】: 中国农业科学院农业资源与农业区划研究所;农业部农业信息技术重点实验室;
【基金】:国家科技重大专项项目“高分农业遥感监测与评价示范系统”(09-Y30B03-9001-13/15)
【分类号】:S127
【参考文献】
相关期刊论文 前10条
1 丁娅萍;陈仲新;;基于最小距离法的RADARSAT-2遥感数据旱地作物识别[J];中国农业资源与区划;2014年06期
2 王迪;周清波;陈仲新;刘佳;;基于合成孔径雷达的农作物识别研究进展[J];农业工程学报;2014年16期
3 李志鹏;李正国;刘珍环;吴文斌;谭杰扬;杨鹏;;基于中分辨TM数据的水稻提取方法对比研究[J];中国农业资源与区划;2014年01期
4 董师师;黄哲学;;随机森林理论浅析[J];集成技术;2013年01期
5 李坤;邵芸;张风丽;;基于RadarSat-2全极化数据的水稻识别[J];遥感技术与应用;2012年01期
6 化国强;肖靖;黄晓军;陈尔学;李秉柏;;基于全极化SAR数据的玉米后向散射特征分析[J];江苏农业科学;2011年03期
7 汪小钦;王钦敏;史晓明;凌飞龙;朱晓铃;;基于主成分变换的ASAR数据水稻种植面积提取[J];农业工程学报;2008年10期
8 杨沈斌;李秉柏;申双和;谭炳香;何维;;基于多时相多极化差值图的稻田识别研究[J];遥感学报;2008年04期
9 杨沈斌;李秉柏;申双和;谭炳香;何维;王志明;;基于ENVISAT ASAR数据的水稻遥感监测[J];江苏农业学报;2008年01期
10 凌飞龙;汪小钦;史晓明;;多时相SAR图像水稻分布信息提取方法研究[J];福建师范大学学报(自然科学版);2007年03期
【共引文献】
相关期刊论文 前10条
1 李磊;牟少敏;林中琦;;随机森林在棉蚜虫害等级预测中的应用[J];安徽农学通报;2017年01期
2 王铮;任华;方燕萍;;随机森林在运营商大数据补全中的应用[J];电信科学;2016年12期
3 宋建国;高强山;李哲;;随机森林回归在地震储层预测中的应用[J];石油地球物理勘探;2016年06期
4 许t,
本文编号:2443394
本文链接:https://www.wllwen.com/kejilunwen/nykj/2443394.html