华东地区Q型烟粉虱对新烟碱类杀虫剂的抗性监测及其靶标基因克隆
[Abstract]:Bemisia tabaci (Gennadius) is a worldwide agricultural pest, among which type B and type Q are the two most serious biotypes. Compared with type B, type Q is more resistant to insecticides and is more resistant to organophosphorus. Most of the insecticides, such as pyrethroids, new nicotine and insect growth regulators, are resistant to different degrees of resistance, especially to new nicotine insecticides. The resistance levels of new nicotine insecticides (imidacloprid, dipyridamine, thiazide and furoximide) to new nicotine insecticides (imidacloprid, dipyridamine, thiazide and furoximide) and fluoridimidine in 8 field populations of Q-type whitefly in eastern China were monitored. The full-length cDNA, of nicotinic acetylcholine receptor subunit p1 gene was cloned by RT-PCR and the resistance-related mutation of acetylcholine receptor p1 subunit was detected in the field population of Q-type Tabaci (Bemisia Tabaci). In addition, the flanking region of the resistance-related cytochrome P450CYP4C64 gene was cloned by genomic walking technique, and the polymorphism of the 5 'flanking region of the CYP4C64 gene of type B and type Q were compared and analyzed. The resistance level of Q-type whitefly population to new nicotine insecticides in Yangzhou, Jiangyin, Dongtai, Hexian, Shanghai, Hefei, Hangzhou and Nanchang areas was determined by leaf soaking method. The results showed that compared with sensitive population, the resistance level of Q-type whitefly population to new nicotine insecticides was determined. The resistance to imidacloprid and enpyrimidine in the field populations of Q-type whitefly in 8 areas was low to medium, and the resistance ratios were 4.07 脳 21.75 times and 3.37% / 16.14 times, respectively. In addition to the high-level resistance of the Yangzhou population to thiazide (RF 40.38), other populations developed low-level resistance to thiothiazide. The resistance multiple was 3.50 脳 8.58. The field population of Bemisia Tabaci in 8 areas was more sensitive to furosemide and fludinamidonitrile, and Nanchang population was the most sensitive to furoximide and fludinamidonitrile (RF = 0.50 and 0.41, respectively), and the population of Nanchang had the highest sensitivity to furoximide and fluodacil (RF = 0.41, respectively). The results showed that there was no cross-resistance between furoximide and fludinamidonitrile with imidacloprid, dipyrimidine and thiazide. The full-length cDNA, coding amino acid sequence of acetylcholine receptor 尾 1 subunit (1597bp) gene of Lepidoptera Tabaci was cloned by RT-PCR, and the consistency of the amino acid sequence with Myzus persicae acetylcholine receptor 尾 1 subunit of Myzus persicae was 84.8%. The sequence analysis of acetylcholine receptor 尾 1 subunit in field population of Q type whitefly showed that there were 23 nucleotide polymorphism sites in the field population of B. Tabaci in 8 areas, which resulted in the substitution of 19 amino acids. Although there was no mutation of R78 amino acid in the D loop corresponding to the T81R mutation associated with imidacloprid resistance of the peach aphid, a deletion of 45 bases located in the D ring was found in Jiangyin population, and the 15 amino acids encoded by the deletion fragment contained R78. The 5 'and 3' flanking genomic sequences of resistance-related cytochrome P450 gene (CYP4C64) were obtained by genomic step-by-step method. The sequence of CYP4C64 5 'flanking genome was analyzed by CONSITE software. Several transcription factor binding sites were found, including 51 GATA-1,24 Ahr-ARNT,7, 33 CREB,2 NRF-2 and 33 Broad-complex-4.. The 5 'flanking sequences of CYP4C64 gene of B. Tabaci and B. Tabaci were compared with those of type B susceptible population. The results showed that there was a transposon insertion of 260bp in the 5' flanking region of CYP4C64 gene in the field population of B. Tabaci compared with B type susceptible population. The transposon sequence contains multiple transcription factor binding sites, including 3 Ahr-ARNT,7 Broad-complex-4 and 1 NRF-2..
【学位授予单位】:扬州大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:S433.39
【相似文献】
相关期刊论文 前10条
1 周莉;;新烟碱类杀虫剂的比较研究[J];黔西南民族师范高等专科学校学报;2009年04期
2 ;呋虫胺研究开发值得关注[J];山东农药信息;2011年04期
3 ;新烟碱类杀虫剂——呋虫胺具有良好发展前景[J];农业技术与装备;2012年06期
4 王荫长,王建军,韩召军,倪珏萍;氯化烟碱类杀虫剂的毒理学研究进展[J];浙江化工;2000年S1期
5 王建军;韩召军;王荫长;;新烟碱类杀虫剂毒理学研究进展[J];植物保护学报;2001年02期
6 殷平 ,柏亚罗;新烟碱类杀虫剂的回顾和展望[J];世界农药;2003年04期
7 莫建初;程家安;;新烟碱类杀虫剂抗药性研究进展[J];植物保护学报;2003年01期
8 白木;周洁;;烟碱类杀虫剂的研发进展[J];宁波化工;2003年Z1期
9 张一宾;;世界烟碱类杀虫剂的市场与品种发展概述[J];农药市场信息;2005年19期
10 唐振华;陶黎明;李忠;;害虫对新烟碱类杀虫剂的抗药性及其治理策略[J];农药学学报;2006年03期
相关会议论文 前6条
1 张靖;徐希宝;芮昌辉;;棉蚜对新烟碱类杀虫剂的抗性研究进展[A];“创新驱动与现代植保”——中国植物保护学会第十一次全国会员代表大会暨2013年学术年会论文集[C];2013年
2 周彩荣;李建;蒋登高;;新烟碱类杀虫剂——nitenpyram[A];第一届全国化学工程与生物化工年会论文摘要集(下)[C];2004年
3 向科军;李金良;袁哲明;;支持向量回归应用于新烟碱类杀虫剂QSAR的研究[A];华中昆虫研究(第七卷)[C];2011年
4 徐德进;顾中言;许小龙;徐广春;;DMIs类杀菌剂对新烟碱类杀虫剂的增毒作用研究[A];江苏省昆虫学会第十三次会员代表大会暨学术研讨会论文摘要集[C];2012年
5 郑立庆;黄瑞娟;薛万新;王栋;;Fe(OH)_3对噻虫嗪水解的影响[A];河南省化学会2010年学术年会论文摘要集[C];2010年
6 须志平;邵旭升;徐晓勇;李忠;;新型杀虫剂环氧虫啶的研究进展[A];“创新驱动与现代植保”——中国植物保护学会第十一次全国会员代表大会暨2013年学术年会论文集[C];2013年
相关重要报纸文章 前6条
1 张剑华;新烟碱类杀虫剂呋虫胺登陆中国市场[N];农民日报;2013年
2 张梦然;新烟碱类杀虫剂对野生动物的风险超过预期[N];科技日报;2014年
3 为农;新烟碱类杀虫剂的应用技术[N];农资导报;2010年
4 本报记者 陈洪波;苏化集团忙着搞研发[N];农民日报;2002年
5 Jackie Bird;全球新农药减少令人忧(之五)[N];农资导报;2004年
6 河北省农林科学院植保所 潘文亮 李耀发;怎样防治棉蚜更有效[N];河北科技报;2014年
,本文编号:2463480
本文链接:https://www.wllwen.com/kejilunwen/nykj/2463480.html