轮毂电机驱动电动汽车耦合动力学特性研究
本文关键词:轮毂电机驱动电动汽车耦合动力学特性研究 出处:《山东理工大学》2016年硕士论文 论文类型:学位论文
更多相关文章: 轮毂电机 电动汽车 耦合动力学 分层协调控制 集成优化
【摘要】:迫于能源紧缺与环境污染的双重压力,高效、节能、环保的电动汽车成为全球汽车行业研究的热点。近年来,基于轮毂电机独立驱动的电动汽车具有广阔的研究前景。轮毂电机驱动车辆具有独特的结构和布置方式,取消了传统的机械传动部件,使传动系统简化,整车整备质量降低,传动效率提高,有效利用空间增大,提高了车辆的通过性能。轮毂电机驱动电动汽车全新的电动汽车结构形式,已成为未来电动汽车领域发展的一个新趋势。但是,由于轮毂电机的引入,使得轮毂电机驱动电动汽车的非簧载质量显著增加,严重影响了车辆的动力学特性;同时轮毂电机受不平路面激励振动进一步恶化,造成电机定转子位移量不断变化,给车辆的动力学特性带来不利的影响。因此,系统的研究轮毂电机驱动电动汽车的耦合动力学特性具有十分重要的意义。在总结了国内外相关研究成果的基础上,以两后轮轮毂电机驱动电动汽车为研究对象,建立了整车非线性耦合动力学模型,分析了路面及电磁力双重激励下轮毂电机驱动电动汽车的耦合动力学性能,研究了主动前轮转向控制、直接横摆力矩控制和主动悬架控制集成的分层式协调控制,并对汽车系统结构和控制器参数进行了集成优化设计。论文主要研究内容如下:(1)轮毂电机驱动电动汽车耦合动力学模型的建立及验证:考虑车辆纵向、横向和垂向动力学之间的主要耦合关系,建立了相对比较完备的轮毂电机驱动电动汽车16自由度非线性耦合动力学模型。在车辆建模过程中,根据前后轴距的滞后及左右车轮的相关程度,建立了路面不平度时域模型。应用Matlab/Simulink软件建立了整车耦合动力学仿真模型,并基于多体动力学软件Adams/Car对模型的正确性进行了验证,为后续车辆动力学性能的仿真分析及系统控制的研究奠定了基础。(2)路面及电磁力复合激励下车辆的耦合动力学特性研究:基于永磁同步电机本体结构,建立了路面激励引起的轮毂电机均匀/不均匀气隙长度模型,应用麦克斯韦应力张量法推导出了轮毂电机电磁力的解析表达式,并对路面不平度及电磁力复合激励下轮毂电机驱动电动汽车的耦合动力学特性进行仿真分析。(3)车辆耦合动力学系统的分层式协调控制研究:为了消除车辆各子系统间的耦合作用对整车控制性能的影响,本文针对汽车转向、制动和悬架集成系统,分别设计了主动前轮转向、直接横摆力矩、主动悬架的各子系统控制器及其协调控制器,制定了汽车各子系统具体的协调控制策略和控制功能权重的分配。通过与分散控制系统进行仿真对比,验证了汽车耦合动力学系统分层式协调控制效果的有效性,为后续汽车多个子系统集成的分层式协调控制提供了一个新的思路。(4)车辆耦合动力学系统结构与控制器参数的集成优化:在分析各系统参数对动力学评价指标影响的基础上,采用扰动法分析了车辆动力学性能指标对悬架刚度和阻尼、车身与电机质量比、定转子质量比及轴承与轮胎刚度比的灵敏度。在对轮毂电机驱动系统参数灵敏度分析的基础上,选择灵敏度较大的系统结构参数作为优化变量。针对车辆耦合动力学系统全局性能的最优的问题,采用了基于粒子群算法的系统机械结构与协调控制器参数的集成优化设计,并与协调控制和结构优化对比仿真分析,结果表明:系统结构与协调控制器参数的集成优化进一步提高了汽车的行驶安全性、平顺性和操纵稳定性等整车性能。研究结果对车辆耦合动力学系统整体最优性能的实现提供了一定的参考意义。
[Abstract]:Owing to the double pressure of energy shortage and environmental pollution, the electric vehicle with high efficiency, energy saving and environmental protection has become a hot spot in the global automotive industry. In recent years, the electric vehicle based on the independent drive of hub motor has a wide research prospect. With the structure and layout of the unique wheel motor driven vehicle, canceled the traditional mechanical transmission parts, the transmission system is simplified, crub quality is reduced and the transmission efficiency, the effective use of space increases, improves vehicle performance by. The wheel motor drive electric vehicle's new electric vehicle structure form has become a new trend in the field of electric vehicle development in the future. However, due to the introduction of motor wheel, the wheel motor drive electric vehicle unsprung mass increased significantly, serious impact on the dynamic characteristics of the vehicle; and wheel motor under road excitation vibration caused by the further deterioration of motor stator and rotor displacement changing, adversely affect the dynamic characteristics of the vehicle. Therefore, it is of great significance to study the coupling dynamic characteristics of the wheel motor driven by the hub motor. On the basis of the relevant research results at home and abroad, with two rear wheel motor drive electric vehicle as the research object, established the vehicle nonlinear coupling dynamics model, analyzes the coupling dynamics of road wheel motor and electromagnetic force excitation dual drive electric vehicle, on the active front steering control, direct yaw moment control active suspension control and hierarchical control coordination and integration, on the vehicle system structure and controller parameters of the integrated optimization design. The main contents of this thesis are as follows: (1) establishment and verification of wheel motor drive coupling dynamics model of electric vehicles: considering the vehicle longitudinal, transverse and vertical relationship to the main coupling dynamics between, established a relatively complete wheel motor drive 16 degrees of freedom nonlinear coupling dynamics model of electric vehicle. In the process of vehicle modeling, the time domain model of road roughness is established according to the lag of the front and back wheelbase and the relative degree of the left and right wheels. The vehicle coupling dynamics simulation model is established by Matlab/Simulink software, and the correctness of the model is verified based on multi-body dynamics software Adams/Car, which lays the foundation for subsequent vehicle dynamic performance simulation analysis and system control research. (2) study on coupling dynamics of vehicle pavement under electromagnetic force and composite excitation: permanent magnet synchronous motor based on the body structure, a wheel motor vibration caused by road uniform / non-uniform air gap length model, analytical expressions of stress tensor method to derive the electromagnetic force of wheel motor application Maxwell, simulation analysis of coupling dynamics and the road roughness in wheel motor and electromagnetic force compound excitation drive electric vehicle. (3) study of hierarchical dynamics of vehicle coupled system coordinated control: in order to eliminate the vehicle subsystems coupling effects on the control performance of the vehicle, the vehicle steering, braking and suspension integrated system, each subsystem controllers were designed active front wheel steering and direct yaw moment and active suspension and coordinated controller and developed a distribution coordination control strategy and control function of the weights of the specific sub system of automobile. By comparing the simulation results with the distributed control system, the effectiveness of the hierarchical coordinated control of the vehicle coupling dynamics system is verified, which provides a new idea for the hierarchical coordinated control of multiple subsystems of subsequent vehicle. (4) the integration and optimization of vehicle dynamic system coupling structure and controller parameters: Based on the analysis of the system of evaluation parameters influence on kinetics, the perturbation method of vehicle dynamics performance index of the sensitivity of suspension stiffness and damping, the body and the quality of motor stator and rotor bearing ratio, mass ratio and stiffness ratio of tire. On the basis of the analysis of the parameter sensitivity of the wheel motor drive system, the system structure parameters with high sensitivity are chosen as the optimization variables. For the optimal vehicle coupling dynamics system global performance problems, using particle swarm optimization system of mechanical structure and coordination controller parameter optimization design based on integrated, and results show that the coordinated control and simulation and optimization analysis, integrated coordination and optimization of system structure and parameters of the controller to further improve the driving safety and ride comfort of vehicle and the handling stability of the vehicle performance. The results of the study provide a certain reference for the realization of the overall optimal performance of the vehicle coupling dynamic system.
【学位授予单位】:山东理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:U469.72
【相似文献】
相关期刊论文 前10条
1 马贵龙;轮毂电机使用中应注意的若干问题[J];中国自行车;2002年06期
2 辜承林;;轮毂电机发展思考[J];电机技术;2006年03期
3 褚文强;辜承林;;电动车用轮毂电机研究现状与发展趋势[J];电机与控制应用;2007年04期
4 尹亮;廖达平;许永亮;代明兵;彭来;;电动代步车用轮毂电机的优化设计[J];机械管理开发;2010年05期
5 舒红宇;彭来;谢鑫;尹亮;;基于遗传算法的电动代步车用轮毂电机优化设计[J];云南大学学报(自然科学版);2011年02期
6 韦萍;;轮毂电机技术在新能源汽车上的应用分析[J];汽车零部件;2012年06期
7 向奎;卢刚;李声晋;周勇;贾亮;;四轮毂电机代步车控制系统设计[J];微特电机;2013年06期
8 车坚志;张君;胡波;王利涛;张飞;;重载轮式车辆轮毂电机系统方案设计与控制研究[J];车辆与动力技术;2013年02期
9 葛英辉,严迪群,倪光正;新的电动车用两相永磁无刷轮毂电动机的研究[J];中小型电机;2004年05期
10 ;读者E-mail[J];汽车与配件;2004年08期
相关会议论文 前5条
1 刘宏;高伟新;;永磁轮毂电机磁系统的研究现状[A];创新驱动,加快战略性新兴产业发展——吉林省第七届科学技术学术年会论文集(上)[C];2012年
2 陈慧;卓桂荣;艾婷婷;;轮毂电机驱动电动车的测试环境开发研究[A];科技、工程与经济社会协调发展——中国科协第五届青年学术年会论文集[C];2004年
3 张泽宇;丁惜瀛;王晶晶;刘德阳;;轮毂电机电动汽车动力学特性研究[A];第九届沈阳科学学术年会论文集(信息科学与工程技术分册)[C];2012年
4 王贵明;王金懿;;兼有电动、发电回馈和电磁制动多功能的电动汽车轮毂电机[A];第十五届中国小电机技术研讨会论文摘要集[C];2010年
5 王贵明;王金懿;;具有启动绕组的单相开关磁阻式多功能轮毂电机[A];第十五届中国小电机技术研讨会论文摘要集[C];2010年
相关重要报纸文章 前1条
1 本报记者 马静t,
本文编号:1339088
本文链接:https://www.wllwen.com/kejilunwen/qiche/1339088.html