基于PSR技术的高效率电动汽车辅助电源设计
发布时间:2018-01-07 10:32
本文关键词:基于PSR技术的高效率电动汽车辅助电源设计 出处:《重庆邮电大学》2016年硕士论文 论文类型:学位论文
更多相关文章: 电动汽车 辅助DC/DC电源 反激 效率 PSR精确采样算法
【摘要】:随着能源的大量消耗和大气污染问题的日益严重,汽车行业的发展方向也开始转向以电动汽车等为代表的新型高节能高环保交通工具。电源系统作为电动汽车的重要设备,主要由动力电池和低压蓄电池组成,其中动力电池是电动机的动力来源,同时还可以通过一定的方式对汽车制动产生的能量进行回收,低压蓄电池则是为汽车照明、仪表等低压车载用电器供能,而车载辅助DC/DC电源就是连接这两个部分的桥梁。为了适应恶劣的车载工况,本文将以电动汽车辅助电源在效率、精度、体积、稳定性等方面的性能指标为研究对象开展相关研究工作。首先,本文介绍了电动汽车车载电源的研究现状,针对辅助DC/DC电源12V和5V的输出应用场合,通过对比选择多路输出反激电路为主拓扑进行研究,并对其两种反馈控制方式分别进行讨论,确定DCM模式下的电流控制为本文的反馈控制策略,同时简单介绍了原边反馈和副边反馈原理。为了达到精确控制电路的目的,建立了小信号等效模型,得到电路的传递函数。其次,本文针对电动车工作环境的限制,在分析所选拓扑的基础上,通过研究整个电源系统结构,将其划分为各个不同的功能单元,然后分别从各个单元的参数设计入手,在硬件方面对变换器的效率进行改进优化。然后,本文通过引入新型的原边采样算法对副边反馈回路进行改进,在去掉了部分不稳定元件的同时还克服了传统原边反馈精度不高等自身缺陷,使得系统在实现小型化的同时还提高了稳定性和效率。在算法理论研究基础上,完成了系统的软件设计,主要包括PID控制算法设计、PSR精确采样算法设计、系统主程序流程设计以及中断子程序流程设计等。最后,本文利用Saber、MathCAD以及Simulink分别建立了电动汽车辅助DC/DC电源各部分的仿真模型,并完成实验平台搭建及仿真测试。仿真结果证明,多路反激DC/DC变换器能够实现稳定的直流输出。最后对设计的辅助电源样机进行工作性能测试,其效率较高能达到90%左右,并且在电压纹波与控制精度上均能满足设计要求,说明功率电路与控制电路设计基本正确,系统工作正常稳定。
[Abstract]:With the large consumption of energy and the problem of air pollution is becoming more and more serious. The development direction of automobile industry also began to shift to the new high energy saving and high environmental protection vehicle represented by electric vehicles. As an important equipment of electric vehicles, power supply system is mainly composed of power battery and low voltage battery. The power battery is the power source of the motor, at the same time, it can recover the energy generated by the automobile brake in a certain way, and the low-voltage battery is the energy supply for the low-voltage vehicle electric appliances such as the automobile lighting, the instrument and so on. The vehicle-borne auxiliary DC/DC power supply is the bridge connecting these two parts. In order to adapt to the bad vehicle conditions, this paper will use the electric vehicle auxiliary power supply in efficiency, precision, volume. Stability and other performance indicators for the research object to carry out related research work. First, this paper introduces the status quo of electric vehicle on-board power supply research. In view of the application of 12V and 5V output of auxiliary DC/DC power supply, the main topology of multi-output flyback circuit is studied, and the two feedback control methods are discussed respectively. The current control in DCM mode is determined as the feedback control strategy in this paper, and the principle of primary and secondary feedback is briefly introduced. In order to achieve the purpose of accurate control circuit, a small signal equivalent model is established. The transfer function of the circuit is obtained. Secondly, according to the limitations of the working environment of electric vehicles, this paper analyzes the selected topology, through the study of the entire power system structure, it is divided into different functional units. Then, starting with the parameter design of each unit, the efficiency of the converter is improved and optimized in hardware. Then, this paper introduces a new algorithm to improve the secondary feedback loop by introducing a new original edge sampling algorithm. It not only removes some unstable elements, but also overcomes the shortcomings of the traditional original edge feedback, such as low precision, which makes the system achieve miniaturization and improve the stability and efficiency. On the basis of the theoretical research of the algorithm. Completed the software design of the system, including PID control algorithm design, PID precise sampling algorithm design, system main program flow design and interrupt subroutine flow design. Finally. In this paper, the simulation models of various parts of the auxiliary DC/DC power supply for electric vehicles are established by using Saberne MathCAD and Simulink, respectively. The simulation results show that the multi-channel flyback DC/DC converter can achieve stable DC output. Finally, the performance of the designed auxiliary power supply prototype is tested. Its high efficiency can reach about 90%, and it can meet the design requirements in voltage ripple and control precision. It shows that the design of power circuit and control circuit is basically correct, and the system works normally and stably.
【学位授予单位】:重庆邮电大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:U469.72
【参考文献】
相关期刊论文 前10条
1 蔡源;王蕴_";汤立新;李玉龙;尚维来;;低碳背景下电动汽车产业分析[J];汽车工业研究;2014年12期
2 王丹;续丹;曹秉刚;;电动汽车关键技术发展综述[J];中国工程科学;2013年01期
3 Gianni Vitale;Antonino Bruno;Nunzio Abbate;Gianfranco Di Marco;;电力转换器可大幅提升新能源汽车电池效率[J];中国电子商情(基础电子);2012年06期
4 刘春娜;;电动汽车电池应用与展望[J];电源技术;2011年01期
5 孟建辉;刘文生;;反激式变换器DCM与CCM模式的分析与比较[J];通信电源技术;2010年06期
6 夏德建;;电动汽车研究综述[J];能源技术经济;2010年07期
7 崔玉峰;杨晴;张林山;王骏;;国内外电动汽车发展现状及充电技术研究[J];云南电力技术;2010年02期
8 黄会雄;袁力辉;王成;;电动汽车隔离型DC/DC辅助电源模块的可靠性设计[J];电子质量;2008年06期
9 聂昕;毛永志;;电动汽车的关键技术及发展[J];新材料产业;2006年10期
10 李秀芬;雷跃峰;;电动汽车关键技术发展综述[J];上海汽车;2006年01期
,本文编号:1392193
本文链接:https://www.wllwen.com/kejilunwen/qiche/1392193.html