基于非线性回归的制动盘通风道结构优化
发布时间:2018-04-10 09:04
本文选题:通风制动盘 切入点:对流散热 出处:《汽车工程》2016年11期
【摘要】:为提高通风制动盘的散热能力,对其内部通道形式进行了优化。根据正交试验设计提出16种通道布置方案,利用CFD方法计算各方案的内壁散热功率。通过方差分析确定各因素影响通风盘散热的显著性水平。忽略非显著性因素后,利用非线性回归方法建立了以通道数量、入口角度和散热肋截面特征为自变量的制动盘内壁散热功率计算模型。采用遗传算法寻求该模型的最优解,得到最优通道形式为80条通风道、通道入口与出口角度均为20°和4号散热肋。CFD计算结果表明,该最优通道结构内壁散热功率为10.465k W,比正交表中各方案的最低散热功率高1倍,比表中最高散热功率高1.62%,说明优化后得到的通风道结构能有效提高制动盘的散热能力。
[Abstract]:In order to improve the heat dissipation capacity of the ventilated brake disc, the internal channel form was optimized.According to the orthogonal experimental design, 16 channel layout schemes are proposed, and the inner wall heat dissipation power of each scheme is calculated by CFD method.Variance analysis was used to determine the significant level of each factor affecting the heat dissipation of the ventilation plate.After ignoring the non-significant factors, a model for calculating the heat dissipation power of the inner wall of the brake disc is established with the independent variables of the number of channels, the inlet angle and the characteristics of the section of the heat dissipation rib by using the nonlinear regression method.The genetic algorithm is used to find the optimal solution of the model. The optimal channel form is 80 ventilation channels. The calculation results show that the channel inlet and outlet angles are both 20 掳and 4 # radiating rib. CFD calculation results show that,The heat dissipation power of the inner wall of the optimal channel structure is 10.465kW, which is 1 times higher than the lowest heat dissipation power of each scheme in the orthogonal table and 1.62k higher than that of the maximum heat dissipation power in the table. It shows that the optimized ventilation channel structure can effectively improve the heat dissipation capacity of the brake disc.
【作者单位】: 北京航空航天大学交通科学与工程学院;东风汽车公司技术中心;
【基金】:国家自然科学基金(51405011) 北京市自然科学基金(3142013)资助
【分类号】:U463.51
,
本文编号:1730561
本文链接:https://www.wllwen.com/kejilunwen/qiche/1730561.html