基于制动执行机构特性的车轮滑动率控制研究
发布时间:2018-06-08 21:13
本文选题:车轮滑动率 + 液压制动系统 ; 参考:《吉林大学》2016年硕士论文
【摘要】:车辆动力学控制作为汽车技术发展的一个重要方向,一直是科研人员研究的热点,ABS/TCS/ESP等车辆动力学控制系统在实车中已经获得广泛应用。实现这些控制系统的途径多是对轮胎力的控制。汽车轮胎力的主要影响因素是路面的附着系数、车轮的垂直载荷、车轮的滑动率和车轮的侧偏角,而在其中滑动率是能直接、精确控制的,因而,滑动率的控制对车辆动力学控制来说至关重要。车辆动力学控制系统通过控制滑动率来调节轮胎力,而滑动率的调节又离不开对制动系统轮缸压力的控制,所以可以通过对车轮施加制动力矩实现对滑动率的控制从而调节轮胎力达到理想值,使汽车获得理想的动力学性能。然而,由于汽车制动系统特别是液压执行器具有很强的非线性特性,对滑动率的调节非常困难。若能在动力学控制中考虑制动系统执行机构的特性,对轮缸压力实现精细调节和有效估计,则能精确控制滑动率,进一步提高汽车的底盘动力学性能。本文的研究工作包括以下几个部分:(1)分析制动系统的结构原理,采用功率键合图理论,建立包含制动主缸、制动管路、制动钳以及车轮在内的液压制动系统模型。并由此列写出描述液压制动系统的状态方程。(2)搭建液压制动系统测试平台,获得制动系统的实验数据,采用最小二乘法和遗传算法,对液压制动系统键合图模型的参数进行识别。(3)在AMESim中建立制动系统单轮模型,将此模型得到的制动轮缸压力、电磁阀流量曲线与由在MATLAB中建立的键合图模型得到的轮缸压力曲线和电磁阀流量曲线进行对比,进一步验证键合图模型的正确性。(4)采用滑模变结构控制算法设计了基于制动执行机构特性的滑动率控制器,并基于MATLAB/AMESim联合仿真平台进行了离线仿真验证。
[Abstract]:As an important direction in the development of automotive technology, vehicle dynamics control system has been widely used in real vehicles, such as ABS / TCS / ESP and other vehicle dynamics control systems. The way to realize these control systems is to control the tire force. The main factors influencing the tire force are the road adhesion coefficient, the vertical load of the wheel, the slip rate of the wheel and the side angle of the wheel, in which the slip rate can be directly and accurately controlled. The control of slip rate is very important for vehicle dynamics control. The vehicle dynamics control system adjusts the tire force by controlling the slip rate, and the sliding rate can not be adjusted without the control of the wheel cylinder pressure of the braking system. Therefore, the braking torque can be applied to the wheel to control the slip rate to adjust the tire force to reach the ideal value, so that the vehicle can obtain the ideal dynamic performance. However, it is very difficult to adjust the slip rate due to the strong nonlinear characteristics of the brake system, especially the hydraulic actuator. If the characteristics of the actuator of the braking system can be considered in the dynamic control and the cylinder pressure can be accurately adjusted and effectively estimated, the sliding rate can be accurately controlled and the dynamic performance of the chassis can be further improved. The research work of this paper includes the following parts: 1) analyzing the structure principle of the brake system, using the power bond graph theory, establishing the hydraulic brake system model including the main brake cylinder, the brake pipe, the brake clamp and the wheel. The test platform of hydraulic braking system is built, the experimental data of braking system are obtained, and the least square method and genetic algorithm are used. The parameters of bond graph model of hydraulic brake system are identified. 3) the single wheel model of brake system is established in AMESim, and the pressure of brake wheel cylinder is obtained by this model. The flow curve of solenoid valve is compared with the pressure curve of cylinder and the flow curve of solenoid valve obtained from bond graph model established in MATLAB. Furthermore, the correctness of bond graph model is verified. (4) the sliding rate controller based on the characteristics of brake actuator is designed by using sliding mode variable structure control algorithm, and the off-line simulation is carried out based on MATLAB / AMESim joint simulation platform.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:U463.5
【参考文献】
相关期刊论文 前10条
1 王治中;于良耀;宋健;;基于制动系统的汽车车轮滑移率控制研究现状[J];汽车工程;2014年01期
2 赵健;张进;朱冰;吴坚;;汽车TCS液压控制单元特性测试与控制应用[J];吉林大学学报(工学版);2014年05期
3 张立军;刘洪亮;;基于整车模型的防抱制动系统建模及仿真研究[J];辽宁工业大学学报(自然科学版);2011年05期
4 李亮;康铭鑫;宋健;李红志;韩宗奇;杨财;;汽车牵引力控制系统的变参数自适应PID控制[J];机械工程学报;2011年12期
5 周伟东;徐国富;白文辉;殷卫乔;;汽车牵引力控制系统控制策略[J];军事交通学院学报;2009年03期
6 张彪;刘昭度;崔海峰;李志远;;基于PWM控制的轮缸压力精细调节试验[J];农业机械学报;2007年07期
7 余佑官,龚国芳,胡国良;AMESim仿真技术及其在液压系统中的应用[J];液压气动与密封;2005年03期
8 李秀英,韩志刚;非线性系统辨识方法的新进展[J];自动化技术与应用;2004年10期
9 刘国福,张s,
本文编号:1997133
本文链接:https://www.wllwen.com/kejilunwen/qiche/1997133.html