动力电池主动式并联能量管理系统的研究
本文选题:并联能量管理 + 二阶阻容等效电池模型 ; 参考:《吉林大学》2016年硕士论文
【摘要】:由于能源问题愈发严重同时环境问题日益严峻,世界各国和主流汽车厂商也愈发加大对电动汽车的投资力度与政策支持。电动汽车有三大核心技术,而电池串并联成组技术正是其中之一,电池管理系统又是电池成组技术最重要的一环。电池的不一致性是电池组的工作性能的重要影响因素,电池管理系统的主要功能之一正是减少电池一致性的差异。为了保证电池单体的一致性,经过多年的研究,国内外的专家学者总结出了多种能量均衡方法。但是这些均衡方法都是串联均衡方案,在电池组工作的过程中不仅串联电池组间需要能量均衡,在并联电池组内由于电池的不一致性各电池间也会产生能量流动从而产生功率损失。因此电池管理系统不仅需要具备串联均衡功能也需要具有并联能量管理的功能。本文的研究目标正是减少并联电池组内各单体间的能量流动,对电池组并联能量管理系统和控制策略进行探讨和研究。本文从以下几方面着手,设计并验证了主动式并联能量管理系统及其控制策略:⒈确定电池单体的模型并搭建电池模型。总结了常用模型的优点之后选择使用等效电路模型来搭建电池单体的模型。在综合考虑了几种常用等效电路模型的优缺点之后决定采用二阶阻容模型来搭建电池等效电路模型。接着使用Simulink软件完成建模工作。为了使电池模型简单实用,本文采用Simscape语言来搭建电池等效电路模型。⒉组建了电池模型参数辨识电路,在脉冲实验数据的基础上辨识模型参数。首先利用课题组的实验设备进行充放电实验,采集实验数据。接着使用遗忘因子递推最小二乘法进行参数辨识工作。最后对辨识结果进行仿真验证,确认其准确性。⒊在二阶阻容等效电路模型的基础上提出了一种结合了开路电压法的安时积分法来估计电池单体的荷电状态(State of Charge,即SOC)。通过小电流恒流放电实验获得了电池单体SOC与开路电压(open circuit voltage,即OCV)的关系曲线。接着搭建Simulink模型。通过将模型计算电池单体的SOC与参考值进行比对,验证了基于二阶阻容电池模型的安时积分法的精度。⒋提出了一种动力电池主动式并联能量管理控制系统。介绍了电池不一致性的危害以及几种电池组串联均衡技术方案。先定性的描述了并联电池单体间能量流动的危害,然后搭建两个电池并联构成的并联回路的Simulink模型,通过仿真实验定量的描述了并联电池间能量流动带来的功率损失。最后介绍本文提出的主动式并联能量管理系统并介绍其控制目标以及工作原理。⒌设计主动式并联能量管理控制策略并仿真分析。首先介绍了模糊控制的基本概念。接着设计了主动式并联能量管理系统的模糊控制器并制定了模糊规则。最后搭建了二十个NCR18650B电池单体组成的并联电池组,在三种初始条件下进行仿真实验验证了主动式并联能量管理系统的效果。
[Abstract]:As energy problems become more serious and environmental problems become increasingly serious, countries and mainstream automobile manufacturers in the world are increasing their investment and policy support for electric vehicles. Electric vehicle has three core technologies, and battery series-parallel group technology is one of them, battery management system is the most important link of battery group technology. The inconsistency of the battery is an important factor affecting the performance of the battery pack. One of the main functions of the battery management system is to reduce the difference of the battery consistency. In order to ensure the consistency of battery cell, after many years of research, experts and scholars at home and abroad have summed up a variety of energy balance methods. But these equalization methods are all series equalization schemes. Because of the inconsistency of the cells in the parallel battery, the energy flow will also occur, which will result in power loss. Therefore, battery management system needs not only series equalization function but also parallel energy management function. The research goal of this paper is to reduce the energy flow among the cells in the parallel battery pack, and to discuss and study the parallel energy management system and control strategy of the battery pack. This paper designs and verifies the model of the active parallel energy management system and its control strategy: 1 to determine the battery cell and build the battery model from the following aspects. After summarizing the advantages of common models, the equivalent circuit model is used to build the model of battery cell. After considering the advantages and disadvantages of several commonly used equivalent circuit models, the second-order resistive and capacitive model is adopted to build the battery equivalent circuit model. Then use Simulink software to complete the modeling work. In order to make the battery model simple and practical, this paper uses Simscape language to build the battery equivalent circuit model .2 to build the battery model parameter identification circuit, based on the pulse experimental data to identify the model parameters. Firstly, charge and discharge experiments are carried out with the experimental equipment of the research group, and the experimental data are collected. Then the recursive least square method of forgetting factor is used to identify the parameters. Finally, the result of identification is verified by simulation. 3. Based on the second-order equivalent circuit model of resistive and capacitive circuits, an Anchorage integration method combining the open-circuit voltage method is proposed to estimate the state of charge of the cell. The relationship between SOC and open voltage open circuit is obtained by low current constant current discharge experiment. Then the Simulink model is built. By comparing the SOC of the battery cell with the reference value, the precision of the amp-hour integration method based on the second-order resistive and capacitive battery model is verified. 4. A kind of active parallel energy management control system for power battery is proposed. The harm of battery inconsistency and several technology schemes of battery series equalization are introduced. Firstly, the harm of energy flow between parallel cells is described qualitatively, then the Simulink model of parallel circuit is built, and the power loss caused by energy flow between parallel cells is quantitatively described by simulation experiments. Finally, the active parallel energy management system proposed in this paper is introduced, and its control goal and working principle 5 are introduced. The active parallel energy management control strategy is designed and simulated. Firstly, the basic concept of fuzzy control is introduced. Then the fuzzy controller of the active parallel energy management system is designed and the fuzzy rules are formulated. At last, 20 parallel batteries composed of NCR 18650B cells are built, and the results of simulation under three initial conditions are given to verify the effectiveness of the active parallel energy management system.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:U469.72
【参考文献】
相关期刊论文 前10条
1 欧阳剑;李迪;柳俊城;;电动汽车用动力电池模型的研究综述[J];机电工程技术;2015年12期
2 丁玲;;电动汽车用动力电池发展综述[J];电源技术;2015年07期
3 赵欢;;中国汽车后市场该如何转型[J];时代汽车;2015年05期
4 邓涛;孙欢;;锂离子电池新型SOC安时积分实时估算方法[J];重庆理工大学学报(自然科学);2015年01期
5 张勇;蒲勇健;史乐峰;;电动汽车充电基础设施建设与政府策略分析[J];中国软科学;2014年06期
6 柴野;;欧洲迈向电动汽车时代[J];求知;2014年05期
7 袁翔;张毅;;电动汽车用动力电池模型研究进展[J];公路与汽运;2014年02期
8 曹志良;;车载锂离子电池组均衡充电管理系统的研究[J];电源技术;2014年03期
9 闫改珍;徐朝胜;李进;权悦;;电动汽车电池均衡技术综述[J];重庆科技学院学报(自然科学版);2014年01期
10 徐颖;沈英;;基于改进卡尔曼滤波的电池SOC估算[J];北京航空航天大学学报;2014年06期
相关会议论文 前1条
1 樊珂;田烨豪;张陈斌;陈宗海;;电动汽车用动力锂电池SOC估计算法研究综述[A];系统仿真技术及其应用学术论文集(第15卷)[C];2014年
相关博士学位论文 前1条
1 董冰;基于锂离子动力电池的纯电动汽车能量管理系统控制策略与优化[D];吉林大学;2014年
相关硕士学位论文 前5条
1 张禹轩;电动汽车动力电池模型参数在线辨识及SOC估计[D];吉林大学;2014年
2 马燕;磷酸铁锂电池模型参数与SOC联合估算研究[D];武汉理工大学;2014年
3 郭凯;基于模型的锂离子电池SOC估计研究[D];北京工业大学;2013年
4 汤依伟;基于电化学—热耦合模型的锂离子动力电池放电行为研究[D];中南大学;2013年
5 王天田;柴油机道路排放特征及控制技术研究[D];武汉理工大学;2010年
,本文编号:2046786
本文链接:https://www.wllwen.com/kejilunwen/qiche/2046786.html