当前位置:主页 > 科技论文 > 汽车论文 >

车用锂离子电池管理系统研究

发布时间:2018-06-21 10:54

  本文选题:纯电动汽车 + 锂离子电池 ; 参考:《安徽农业大学》2016年硕士论文


【摘要】:能源紧缺和日益严重的环境污染已经成为一个亟待解决的全球性问题。传统燃油汽车的发展导致了石油资源的过度消耗,汽车尾气的排放更是目前大气污染的主要来源之一,在这种背景下,“零排放”的纯电动汽车受到了越来越多人的关注。但是车载动力电源技术一直是制约纯电动汽车发展和普及的瓶颈,同时也占了纯电动汽车成本的相当大一部分。锂离子电池虽然是目前较为理想的动力电池,但在短时间内也不会有突破性进展,而高性能电池管理系统的开发则是目前打破僵局的一个突破口。论文以车用18650锂离子电池为管理对象,在锂离子电池管理系统的软硬件设计方面主要进行了以下的工作:以额定容量3.2Ah的18650锂离子电池为试验对象,进行了室温下的充放电试验、放电容量试验和HPPC试验。对试验所得数据的处理和分析,了解了试验对象的充放电特性、开路电压和内阻特性。为后文内容,尤其是SOC估计部分内容提供了大量试验数据。设计了以电池管理芯片BQ76PL536A-Q1和MSP430F5529单片机为核心的锂离子电池管理系统。采用集成式的整体结构,将锂离子电池管理系统分为主控板和采集板两部分。主控板主要包括总电流采集模块、液晶显示模块和USB通信模块;采集板主要包括电压采集模块、温度采集模块、隔离模块和均衡模块。在硬件设计方案的指导下完成了PCB的绘制。对常用的SOC估算方法进行分析和比较后,确定了适用于工程的SOC估算方法:开路电压与安时累积法相结合。对充放电倍率、温度和老化这三个SOC估算的影响因素进行了理论分析,结合18650锂离子电池试验数据得出了安时累积法基于放电倍率、温度和老化这三个影响因素的修正系数。对锂离子电池管理系统的软件进行了设计,与硬件联合调试后实现了电压监测、电流监测、温度监测,故障检查,电池均衡和SOC估算等功能。搭建了模拟电动汽车行驶过程的放电监测试验平台,以该试验平台为基础进行了锂离子电池管理系统的电压监测精度、放电监测和均衡试验。通过对电动汽车行驶过程的模拟,发现在没有均衡系统参与下电池一致性将呈现变差的趋势,论证了均衡的必要性和重要性。
[Abstract]:Energy shortage and increasingly serious environmental pollution have become a global problem to be solved. The development of traditional fuel vehicles leads to the excessive consumption of petroleum resources, and the emission of vehicle exhaust is one of the main sources of air pollution at present. Under this background, "zero emission" pure electric vehicles have attracted more and more attention. However, the on-board power supply technology has been a bottleneck restricting the development and popularity of pure electric vehicles, and also accounted for a large part of the cost of pure electric vehicles. Although lithium ion battery is an ideal power battery at present, it will not make a breakthrough in a short time, and the development of high performance battery management system is a breakthrough to break the deadlock. The thesis takes 18650 lithium ion battery for vehicle as the management object. The main work in the software and hardware design of the lithium ion battery management system is as follows: take the 18650 lithium ion battery with rated capacity 3.2Ah as the experimental object. Charge and discharge tests, discharge capacity tests and HPPC tests were carried out at room temperature. The charge-discharge characteristics, open circuit voltage and internal resistance characteristics of the test objects are analyzed and analyzed. It provides a lot of experimental data for later content, especially for SOC estimation. A lithium ion battery management system based on BQ76PL536A-Q1 and MSP430F5529 is designed. The lithium ion battery management system is divided into two parts: the main control board and the acquisition board. The main control board mainly includes the total current acquisition module, liquid crystal display module and USB communication module; the acquisition board mainly includes voltage acquisition module, temperature acquisition module, isolation module and equalization module. PCB drawing is completed under the guidance of hardware design. After analyzing and comparing the commonly used SOC estimation methods, the SOC estimation method suitable for engineering is determined, which is the combination of open circuit voltage and ampere-hour cumulation method. The influence factors of charge / discharge ratio, temperature and aging on SOC estimation were analyzed theoretically. Combined with the test data of 18650 lithium ion battery, the modified coefficients of amperometric cumulation method based on discharge rate, temperature and aging were obtained. The software of Li-ion battery management system is designed. After debugging with hardware, the functions of voltage monitoring, current monitoring, temperature monitoring, fault checking, battery equalization and SOC estimation are realized. A discharge monitoring test platform is built for simulating the driving process of electric vehicles. Based on the test platform, the voltage monitoring accuracy, discharge monitoring and equalization test of the lithium ion battery management system are carried out. By simulating the driving process of electric vehicle, it is found that the battery consistency will become worse without the participation of equalization system, and the necessity and importance of equalization are demonstrated.
【学位授予单位】:安徽农业大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:U469.72

【参考文献】

相关期刊论文 前10条

1 裴锋;符兴锋;;基于风冷模式的18650动力电池系统安全性设计研究[J];汽车技术;2015年08期

2 乔旭彤;耿海洲;董峰;;集中式电动汽车电池管理系统设计[J];电子测量与仪器学报;2015年07期

3 邓晔;胡越黎;滕华强;;锂电池开路电压的预估及SOC估算[J];仪表技术;2015年02期

4 刘谦;何明前;范世军;李朋飞;李占锋;;基于LTC6804的电池参数采集系统设计[J];工业控制计算机;2015年01期

5 郑林锋;姜久春;王占国;马泽宇;马晨;;锂离子电池电压在线与离线检测设计[J];电源技术;2015年01期

6 闫金定;;锂离子电池发展现状及其前景分析[J];航空学报;2014年10期

7 辛U,

本文编号:2048365


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/qiche/2048365.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户2a5a7***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com