基于Pareto原理的HEV能量控制参数NSGA-Ⅱ多目标优化的研究
发布时间:2018-08-27 08:00
【摘要】:以某款并联混合动力汽车为对象,选取8个能量控制参数作为燃油经济性和排放性综合优化参数,提出基于Pareto原理的改进型NSGA-Ⅱ多目标优化算法,并进行仿真优化。结果表明:优化后燃油消耗率最大降低了11.29%,排放物综合指标最大下降8.78%,其中CO排放的优化效果最显著,下降了24.2%;SOC平衡的误差在0.5%以内,满足约束条件,发动机与电机工作点的效率分布明显改进;同时相比传统加权等单目标优化法,所提出的算法能同时得到多组优化解,为能量管理前期设计提供了更多的选择空间。
[Abstract]:Taking a parallel hybrid electric vehicle as an object, eight energy control parameters are selected as fuel economy and emission optimization parameters. An improved NSGA- 鈪,
本文编号:2206620
[Abstract]:Taking a parallel hybrid electric vehicle as an object, eight energy control parameters are selected as fuel economy and emission optimization parameters. An improved NSGA- 鈪,
本文编号:2206620
本文链接:https://www.wllwen.com/kejilunwen/qiche/2206620.html