新型车用无级变速器(BVT)自适应加压机构研究
[Abstract]:With the increasing severity of environmental pollution and lack of energy, energy saving and environmental protection have become the development direction in the future, and the fuel economy of vehicle CVT has been paid more and more attention by the industry. Our research group puts forward BVT., which is based on the structure of semi-annular CVT. In this paper, the Archimedes spiral adaptive compression mechanism in BVT is analyzed theoretically, simulated and studied experimentally. the main research work is as follows: (1) according to the performance requirements of BVT for compression mechanism, the references at home and abroad are consulted. The shortcomings of the steel ball V-groove adaptive compression mechanism in the first generation prototype are pointed out, and the research contents and research objectives of this paper are put forward. (2) in order to compare the performance of the spiral surface and the steel ball V-groove adaptive compression mechanism, The stress analysis and strength analysis of the two kinds of compression mechanisms are carried out respectively, and the structural parameters of the spiral surface are optimized, and it is verified that the two kinds of compression mechanisms meet the requirements of the driving condition of the whole vehicle, and the former has smaller transmission coefficient than the latter. It has the advantages of strong impact resistance and better adaptive compression performance. (3) the contact stress of spiral surface and V-groove adaptive compression mechanism of steel ball is analyzed by using the finite element analysis software ABAQUS, under the driving condition of the whole vehicle. (3) the contact stress of the spiral surface and the V-groove adaptive compression mechanism of the steel ball is analyzed by using the finite element analysis software FEA. Through the comparison of the calculation results of the two kinds of compression mechanisms, it can be seen that the spiral surface adaptive compression mechanism meets the requirements of the driving condition of the whole vehicle and the contact stress is smaller. At the same time, the theoretical analysis and finite element analysis are compared. the results show that the two calculation results are basically consistent, which can be used as the basis for strength check of spiral adaptive compression mechanism. (4) using virtual prototype simulation software ADAMS, By using the dynamic method of multi-flexible body system, the multi-flexible system models of spiral surface and steel ball V-groove adaptive compression mechanism are established respectively, and the simulation curves of the compression mechanism under the driving condition of the whole vehicle are obtained. Through comparison, the effectiveness of theoretical calculation and simulation experiment is verified. And the spiral surface adaptive compression mechanism has better adaptive compression performance. (5) the no-load test and loading test of the second generation (spiral surface adaptive compression mechanism) physical prototype of BVT are completed on the experimental bench. By comparing the experimental results of the two kinds of compression mechanisms with theoretical analysis and simulation analysis, it is verified that the spiral surface adaptive compression mechanism has the advantages of large bearing capacity, stable and reliable compression performance, and meets the pressure requirements of BVT. In this paper, the reliability of the spiral adaptive pressure mechanism under the driving condition of the whole vehicle is verified, which provides a reference for the further development of the research group for BVT.
【学位授予单位】:广东工业大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:U463.212
【参考文献】
相关期刊论文 前10条
1 郝建军;刘云云;兰家水;熊锋;;凸轮加压CVT设计与仿真[J];机械传动;2015年03期
2 申孟宜;;高汽车保有量下的PM2.5治理研究[J];调研世界;2013年07期
3 赵志礼;宋智鹰;;立柱和千斤顶缸口矩形螺纹参数优化[J];煤矿开采;2013年02期
4 郑丽伟;付存银;贾春强;;点接触局部应力问题研究[J];煤矿机械;2012年08期
5 关佩;陈家庆;;Hertz点接触问题求解方法的对比研究[J];机械科学与技术;2011年07期
6 曹成龙;周云山;高帅;安颖;;金属带式无级变速器夹紧力试验研究[J];湖南大学学报(自然科学版);2010年07期
7 何辉波;李华英;秦大同;何培祥;;汽车环面型无级变速器结构参数优化设计[J];机械工程学报;2009年05期
8 周有强,崔学良,董志峰;机械无级变速器发展概述[J];机械传动;2005年01期
9 刘开昌,蓝兆辉,石宗宝;行星锥盘式无级变速器的创新设计[J];包装与食品机械;2003年04期
10 ;An overview on research developments of toroidal continuously variable transmissions[J];Journal of Chongqing University;2003年01期
相关博士学位论文 前1条
1 李晓滨;大规格GCr15轴承钢连铸连轧质量分析及有限元模拟[D];东北大学;2011年
相关硕士学位论文 前10条
1 谭丰哲;基于虚拟样机技术的新型无级变速器的动力学仿真分析[D];华南理工大学;2015年
2 易园园;AMT换档机构动态仿真与优化设计[D];广东工业大学;2014年
3 任珂珂;河南省新能源汽车产业化的风险研究[D];兰州交通大学;2013年
4 何威;内置气动式弹射装置设计与虚拟样机仿真研究[D];大连理工大学;2012年
5 杨凯;金属带式CVT夹紧力控制及液压控制系统的仿真分析[D];湖南大学;2012年
6 袁中亮;金属带式无级变速器夹紧力控制研究[D];吉林大学;2011年
7 张欢;基于虚拟样机的大型船用甲板起重机结构动力学仿真研究[D];武汉理工大学;2011年
8 姚娟;基于虚拟样机技术的减速器动力学仿真研究[D];武汉理工大学;2008年
9 张春亮;2K-V型减速机的虚拟样机仿真研究[D];天津工程师范学院;2008年
10 张尔文;重载传动螺旋副受力分析与承载能力研究[D];广东工业大学;2007年
,本文编号:2478998
本文链接:https://www.wllwen.com/kejilunwen/qiche/2478998.html