针对车辆自组织网络中认知无线电的频谱感知
发布时间:2021-02-19 21:40
频谱资源是无线网络中的一个主要组成部分,对这种有限的资源持续且固定的分配会导致频带的耗尽。因此,这种资源的共享能力将持续作为一个主要的研究方向,对研究人员有莫大的吸引力。近来,新兴的对现有资源的扩展、应用和服务例如运载性自组织网络,在大多数情况下对可利用频带的需求越来越大。因此,对频谱资源低效的利用以及其匮乏的现状促生了一个新的无线通信范例,在这个范例中可用的频谱资源能被机会性地调用。且在该范例中,可靠通信将在需要时被提供,这时,无线电频谱能得到更有效率的利用,这确保了未来可能出现的服务能得到符合其要求的频谱。在认知无线电的循环中,一个认知无线电的监听器会捕捉到频带信息并探测到可用的频谱空间,频谱空间通过频谱感知泄露信息的特点可以被忽略。作为认知无线电的一个关键阶段,频谱探测的目的在于判断一个频谱的特定成分是否被占用--即区分PU(主用户)的存在或者缺失。在认知无线电系统中的认知用户,也叫次级用户,将被要求传输不会妨害主用户传输的信息。这主要涉及到PU(主用户)通过利用其中一个频谱探测技术来识别。由此主用户在使用自己的频谱的时候,其使用权能得到保护,同时调用没有主用户的频带。当前,认知...
【文章来源】:湖南大学湖南省 211工程院校 985工程院校 教育部直属院校
【文章页数】:110 页
【学位级别】:硕士
【文章目录】:
ABSTRACT
中文摘要
ABREVIATIONS
CHAPTER1:INTRODUCTION
1.1 Background
1.2 Spectrum Scarcity in VANETs
1.3 Motivation
1.4 Related work
1.5 Contribution
1.6 Organization of thesis
CHAPTER2:VEHICULAR AD HOC NETWORK AND COGNAITIVE RADIO OVERVIEW
2.1 Introduction
2.2 Mobile Wireless Ad-hoc Networks(MANETs)
2.3 Vehicular Ad hoc NETworks(VANETs)
2.3.1 VANET Architecture
2.3.2 VANET applications
2.3.3 VANET Regulation
2.3.4 Routing Protocol
2.3.5 VANET security
2.4 Cognitive Radio Overview
2.4.1 Introduction
2.4.2 Cognitive radio fundamentals
2.4.3 Spectrum Access Model
2.4.3.1 Dynamic Spectrum Access
2.4.4 Cognitive Radio Functions
2.4.5 Spectrum Sensing in Cognitive Radio
2.4.6 Spectrum Sensing Techniques
2.4.6.1 Non-cooperative detection
2.4.6.1.1 Energy Detection
2.4.6.1.2 Matched Filter Detection
2.4.6.1.3 Cyclostationary Feature Detection
2.5 Conclusion
CHAPTER3:COGNITIVE RADIO IN VEHICULAR AD HOC NETWORK AND COOPERATIVE SENSING
3.1 Introduction
3.2 Cognitive radio in Vehicular ad-hoc network Motivation
3.2.1 More spectrum holes on rural and highway
3.2.2 Resiliency
3.2.3 Sufficient Resources in vehicles
3.2.4 Data Offloading
3.3 CR-VANET Spectrum Sensing
3.3.1 Per-vehicle Sensing Scheme
3.3.2 Geo-location Based Sensing
3.3.3 Cooperative Based sensing scheme
3.4 Cooperative Spectrum Sensing
3.4.1 Cooperative spectrum sensing topologies
3.4.2 Centralized cooperative spectrum sensing
3.4.3 Reporting schemes
3.4.3.1 Hard Fusion
3.4.3.2 Soft Fusion
3.5 CSS Selection
3.5.1 The proposed algorithm
3.6 Conclusions
CHAPTER4:SIMULATION
4.1 Introduction
4.2 Model
4.2.1 Signal Detection Probability
4.2.2 Influence of spatial correlation on detection probabilities
4.3 Simulation Results
4.4 Simulation Results for CCSV selection algorithm
CHAPTER5:CONCLUSION AND FUTURE WORK
5.1 Conclusion
5.2 Future work
ACKNOWLEDGEMENTS
REFERENCES
本文编号:3041727
【文章来源】:湖南大学湖南省 211工程院校 985工程院校 教育部直属院校
【文章页数】:110 页
【学位级别】:硕士
【文章目录】:
ABSTRACT
中文摘要
ABREVIATIONS
CHAPTER1:INTRODUCTION
1.1 Background
1.2 Spectrum Scarcity in VANETs
1.3 Motivation
1.4 Related work
1.5 Contribution
1.6 Organization of thesis
CHAPTER2:VEHICULAR AD HOC NETWORK AND COGNAITIVE RADIO OVERVIEW
2.1 Introduction
2.2 Mobile Wireless Ad-hoc Networks(MANETs)
2.3 Vehicular Ad hoc NETworks(VANETs)
2.3.1 VANET Architecture
2.3.2 VANET applications
2.3.3 VANET Regulation
2.3.4 Routing Protocol
2.3.5 VANET security
2.4 Cognitive Radio Overview
2.4.1 Introduction
2.4.2 Cognitive radio fundamentals
2.4.3 Spectrum Access Model
2.4.3.1 Dynamic Spectrum Access
2.4.4 Cognitive Radio Functions
2.4.5 Spectrum Sensing in Cognitive Radio
2.4.6 Spectrum Sensing Techniques
2.4.6.1 Non-cooperative detection
2.4.6.1.1 Energy Detection
2.4.6.1.2 Matched Filter Detection
2.4.6.1.3 Cyclostationary Feature Detection
2.5 Conclusion
CHAPTER3:COGNITIVE RADIO IN VEHICULAR AD HOC NETWORK AND COOPERATIVE SENSING
3.1 Introduction
3.2 Cognitive radio in Vehicular ad-hoc network Motivation
3.2.1 More spectrum holes on rural and highway
3.2.2 Resiliency
3.2.3 Sufficient Resources in vehicles
3.2.4 Data Offloading
3.3 CR-VANET Spectrum Sensing
3.3.1 Per-vehicle Sensing Scheme
3.3.2 Geo-location Based Sensing
3.3.3 Cooperative Based sensing scheme
3.4 Cooperative Spectrum Sensing
3.4.1 Cooperative spectrum sensing topologies
3.4.2 Centralized cooperative spectrum sensing
3.4.3 Reporting schemes
3.4.3.1 Hard Fusion
3.4.3.2 Soft Fusion
3.5 CSS Selection
3.5.1 The proposed algorithm
3.6 Conclusions
CHAPTER4:SIMULATION
4.1 Introduction
4.2 Model
4.2.1 Signal Detection Probability
4.2.2 Influence of spatial correlation on detection probabilities
4.3 Simulation Results
4.4 Simulation Results for CCSV selection algorithm
CHAPTER5:CONCLUSION AND FUTURE WORK
5.1 Conclusion
5.2 Future work
ACKNOWLEDGEMENTS
REFERENCES
本文编号:3041727
本文链接:https://www.wllwen.com/kejilunwen/qiche/3041727.html