当前位置:主页 > 科技论文 > 汽车论文 >

基于优秀驾驶行为的自动爬坡方法研究

发布时间:2024-04-16 00:14
  由于人类身体的局限性,驾驶过程存在视觉盲区、醉驾和疲劳驾驶等因素会导致交通事故的频繁发生。所以如何营造一个安全舒适的驾驶环境已经成为交通领域急需解决的问题。自动驾驶技术能够避免人类因为先天局限性所带来的驾驶问题,而自动驾驶技术的最高体现就是实现拟人驾驶,拟人驾驶需要人类的实际优秀驾驶行为提供指导方法和数据支撑并建立学习模型。所以本文在以拟人驾驶为目标的思想下对优秀驾驶行为进行选取研究,并建立精度较高的学习模型。首先,在分析城市场景中常见的五种驾驶工况(左转弯、右转弯、车辆启动、车辆制动和爬坡过程)的基础上,基于驾驶模拟器平台进行试验路线和试验流程的设计,寻找52名具有不同驾驶特性的驾龄超过两年的驾驶员在城市场景中进行多次的模拟驾驶实验,得到大量驾驶员操作行为信息和车辆运动状态信息,为优秀驾驶行为的选取和学习模型的建立提供数据支持。其次,阐述优秀驾驶行为的选取意义,对比分析多种聚类算法的优缺点选出描述能力强、分类结果明确、计算高效的最大期望算法(Expectation Maximization Algorithm,EM)的高斯混合模型(Gaussian Mixed Model,GMM)对...

【文章页数】:66 页

【学位级别】:硕士

【文章目录】:
摘要
Abstract
1 绪论
    1.1 前言
        1.1.1 研究背景
        1.1.2 研究意义
    1.2 国内外研究现状
        1.2.1 国外研究现状
        1.2.2 国内研究现状
    1.3 主要研究内容及章节安排
        1.3.1 主要研究内容
        1.3.2 章节安排
2 城市道路驾驶模拟试验设计
    2.1 试验设备
        2.1.1 试验设备的组成
        2.1.2 驾驶模拟平台工作原理
    2.2 试验人员的选择
    2.3 试验场景设计
    2.4 试验流程
        2.4.1 试验准备阶段
        2.4.2 试验人员的培训
        2.4.3 试验过程
    2.5 试验数据收集
    2.6 本章小结
3 优秀驾驶行为选取
    3.1 选取意义
    3.2 选取场景
    3.3 聚类算法
        3.3.1 算法选取
        3.3.2 高斯混合模型
    3.4 全部行为分析
        3.4.1 左转弯
        3.4.2 右转弯
        3.4.3 启动过程
        3.4.4 制动过程
        3.4.5 爬坡过程
    3.5 熟悉场景下的驾驶行为
        3.5.1 熟悉场景的特点
        3.5.2 两种场景下行为对比
    3.6 本章小结
4 优秀爬坡驾驶行为学习模型
    4.1 学习意义及方法
    4.2 随机森林原理
        4.2.1 抽样产生训练集
        4.2.2 构建每棵决策树
        4.2.3 森林的形成
    4.3 随机森林模型搭建
        4.3.1 输入特征选择
        4.3.2 决策树数目
        4.3.3 模型训练
    4.4 神经网络原理
        4.4.1 神经元模型
        4.4.2 多层网络
        4.4.3 学习算法
    4.5 神经网络模型搭建
        4.5.1 神经元数目选取
        4.5.2 模型训练
        4.5.3 训练结果
    4.6 本章小结
5 全文总结与研究展望
    5.1 全文工作总结
    5.2 研究展望
参考文献
致谢



本文编号:3956158

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/qiche/3956158.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户81d1c***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com