基于多特征提取的中文微博舆情分类研究
本文关键词:基于多特征提取的中文微博舆情分类研究
【摘要】:对微博情感分类,及时掌握微博上发布信息状态是网络舆情监控的重要研究内容。为能有效提取微博样本的特征,结合微博书写时口语化、时代化、含表情等特点,提出基于改进N-Gram的微博的多特征项提取算法,并给出基于聚类的KNN分类模型。实验结果表明,本文提出的算法能够有效提高微博舆情分类性能。
【作者单位】: 福建警察学院侦查系;
【关键词】: 多特征 微博舆情 特征选择 KNN
【基金】:国家自然科学基金(61472329) 福建省教育厅基金(JAT160561) 福建警察学院院级课题(YJ1411)
【分类号】:TP391.1
【正文快照】: 0引言随着互联网技术和移动通信技术的快速发展,微博作为一种新的社交方式具有传播速度快、交互性强、发布方便等特点而深受广大网民欢迎。然而,微博在便于人们获取信息的同时,也为负面信息的快速传播提供了便利条件。在现实生活中,群体性事件发生时有些恶意分子往往会在微博
【相似文献】
中国期刊全文数据库 前10条
1 吉小军,李世中,李霆;相关分析在特征选择中的应用[J];测试技术学报;2001年01期
2 贾沛;桑农;唐红卫;;一种改进的类别依赖型特征选择技术[J];计算机与数子工程;2003年06期
3 靖红芳;王斌;杨雅辉;徐燕;;基于类别分布的特征选择框架[J];计算机研究与发展;2009年09期
4 吴洪丽;朱颢东;周瑞琼;;使用特征分辨率和差别对象对集的特征选择[J];计算机工程与应用;2010年16期
5 杨艺;韩德强;韩崇昭;;基于排序融合的特征选择[J];控制与决策;2011年03期
6 李云;;稳定的特征选择研究[J];微型机与应用;2012年15期
7 钱学双;多重筛选逐步回归特征选择法及其应用[J];信息与控制;1986年05期
8 宣国荣;柴佩琪;;基于巴氏距离的特征选择[J];模式识别与人工智能;1996年04期
9 范劲松,方廷健;特征选择和提取要素的分析及其评价[J];计算机工程与应用;2001年13期
10 王新峰;邱静;刘冠军;;基于特征相关性和冗余性分析的机械故障特征选择研究[J];中国机械工程;2006年04期
中国重要会议论文全文数据库 前10条
1 靖红芳;王斌;杨雅辉;;基于类别分布的特征选择框架[A];第四届全国信息检索与内容安全学术会议论文集(上)[C];2008年
2 李长升;卢汉清;;排序学习模型中的特征选择[A];第六届和谐人机环境联合学术会议(HHME2010)、第19届全国多媒体学术会议(NCMT2010)、第6届全国人机交互学术会议(CHCI2010)、第5届全国普适计算学术会议(PCC2010)论文集[C];2010年
3 刘功申;李建华;李生红;;基于类信息的特征选择和加权方法[A];NCIRCS2004第一届全国信息检索与内容安全学术会议论文集[C];2004年
4 倪友平;王思臣;马桂珍;陈曾平;;分支界定算法在低分辨雷达飞机架次判别中的应用[A];第十三届全国信号处理学术年会(CCSP-2007)论文集[C];2007年
5 李泽辉;聂生东;陈兆学;;应用多类SVM分割MR脑图像特征选择与优化的实验研究[A];中国仪器仪表学会第九届青年学术会议论文集[C];2007年
6 蒙新泛;王厚峰;;主客观识别中的上下文因素的研究[A];中国计算机语言学研究前沿进展(2007-2009)[C];2009年
7 万京;王建东;;一种基于新的差异性度量的ReliefF方法[A];2009年研究生学术交流会通信与信息技术论文集[C];2009年
8 范丽;许洁萍;;基于GMM的音乐信号音色模型研究[A];第四届和谐人机环境联合学术会议论文集[C];2008年
9 陈友;戴磊;程学旗;;基于MRMHC-C4.5的IP流分类[A];第三届全国信息检索与内容安全学术会议论文集[C];2007年
10 申f;杨宏晖;袁帅;;用于水声目标识别的互信息无监督特征选择[A];第三届上海——西安声学学会学术会议论文集[C];2013年
中国博士学位论文全文数据库 前10条
1 李静;高维数据交互特征选择和分类研究[D];燕山大学;2015年
2 刘风;基于磁共振成像的多变量模式分析方法学与应用研究[D];电子科技大学;2014年
3 王石平;粗糙拟阵及其在高维数据降维中的应用研究[D];电子科技大学;2014年
4 代琨;基于支持向量机的网络数据特征选择技术研究[D];解放军信息工程大学;2013年
5 王爱国;微阵列基因表达数据的特征分析方法研究[D];合肥工业大学;2015年
6 王博;文本分类中特征选择技术的研究[D];国防科学技术大学;2009年
7 张明锦;基于特征选择的多变量数据分析方法及其在谱学研究中的应用[D];华东理工大学;2011年
8 高青斌;蛋白质亚细胞定位预测相关问题研究[D];国防科学技术大学;2006年
9 冯国忠;文本分类中的贝叶斯特征选择[D];东北师范大学;2011年
10 张丽新;高维数据的特征选择及基于特征选择的集成学习研究[D];清华大学;2004年
中国硕士学位论文全文数据库 前10条
1 周瑞;基于支持向量机特征选择的移动通信网络问题分析[D];华南理工大学;2015年
2 张金蕾;蛋白质SUMO化修饰位点预测的数据挖掘技术研究[D];西北农林科技大学;2015年
3 陈云风;基于聚类集成技术的高铁信号故障诊断研究[D];西南交通大学;2015年
4 张斌斌;网络股评的倾向性分析[D];中央民族大学;2015年
5 季金胜;高分辨率遥感影像典型地物目标的特征选择及其稳定性研究[D];上海交通大学;2015年
6 袁玉录;基于数据分类的网络通信行为建模方法研究[D];电子科技大学;2015年
7 王虎;基于试验设计的白酒谱图特征选择及支持向量机参数优化研究[D];南京财经大学;2015年
8 王维智;基于特征提取和特征选择的级联深度学习模型研究[D];哈尔滨工业大学;2015年
9 皮阳;基于声音的生物种群识别[D];电子科技大学;2015年
10 刘树龙;特征选择在软件缺陷预测中的应用技术研究[D];南京大学;2015年
,本文编号:1063648
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1063648.html