局部分布信息增强的视觉单词描述与动作识别
本文关键词:局部分布信息增强的视觉单词描述与动作识别
更多相关文章: 人体行为识别 局部分布特征 增强单词包模型 支持向量机
【摘要】:传统的单词包(Bag-Of-Words,BOW)算法由于缺少特征之间的分布信息容易造成动作混淆,并且单词包大小的选择对识别结果具有较大影响。为了体现兴趣点的分布信息,该文在时空邻域内计算兴趣点之间的位置关系作为其局部时空分布一致性特征,并提出了融合兴趣点表观特征的增强单词包算法,采用多类分类支持向量机(Support Vector Machine,SVM)实现分类识别。分别针对单人和多人动作识别,在KTH数据集和UT-interaction数据集上进行实验。与传统单词包算法相比,增强单词包算法不仅提高了识别效率,而且削弱了单词包大小变化对识别率的影响,实验结果验证了算法的有效性。
【作者单位】: 中国民航大学智能信号与图像处理天津市重点实验室;
【关键词】: 人体行为识别 局部分布特征 增强单词包模型 支持向量机
【基金】:国家自然科学基金(61179045)~~
【分类号】:TP391.41
【正文快照】: 1引言人体行为识别是计算机视觉领域的热门研究课题之一,它具有非常重要的现实意义,在智能视频监控、虚拟现实、医疗辅助和运动员动作分析等方面[1]有着十分广泛的应用。但是,由于背景复杂、摄相机抖动、光照变化、遮挡以及不同动作者的类内差异等都使目前的行为识别面临着很
【相似文献】
中国期刊全文数据库 前10条
1 胡雅琴;;动作识别技术及其发展[J];电视技术;2013年S2期
2 倪世宏,史忠科,谢川,王彦鸿;军用战机机动飞行动作识别知识库的建立[J];计算机仿真;2005年04期
3 程祥;;人体动作识别的研究[J];电脑知识与技术;2006年20期
4 黄飞跃;徐光yP;;视角无关的动作识别[J];软件学报;2008年07期
5 徐光yP;曹媛媛;;动作识别与行为理解综述[J];中国图象图形学报;2009年02期
6 黄丽鸿;高智勇;刘海华;;基于脉冲神经网络的人体动作识别[J];现代科学仪器;2012年02期
7 周艳青;王磊;;基于视觉的人体动作识别综述[J];山东轻工业学院学报(自然科学版);2012年01期
8 曹琨;;基于检索表的实时动作识别技术研究[J];中外企业家;2014年05期
9 刘博;安建成;;基于关键姿势的人体动作识别[J];电视技术;2014年05期
10 王燕;张绍武;凌志刚;潘泉;;基于图嵌入线性拓展方法的人体动作识别研究[J];计算机仿真;2008年10期
中国重要会议论文全文数据库 前7条
1 袁飞;程韬波;周松斌;肖先文;;基于加速度特征的可拓动作识别方法[A];广州市仪器仪表学会2009年学术年会论文集[C];2010年
2 黄飞跃;徐光yP;;自然的人体动作识别[A];第三届和谐人机环境联合学术会议(HHME2007)论文集[C];2007年
3 叶喜勇;陶霖密;王国建;邸慧军;;视角无关的人体躯干动作识别[A];第六届和谐人机环境联合学术会议(HHME2010)、第19届全国多媒体学术会议(NCMT2010)、第6届全国人机交互学术会议(CHCI2010)、第5届全国普适计算学术会议(PCC2010)论文集[C];2010年
4 黄艳欢;叶少珍;;连续动作分割综述[A];第十四届全国图象图形学学术会议论文集[C];2008年
5 董力赓;陶霖密;徐光yP;;头部姿态和动作的识别与理解[A];第三届和谐人机环境联合学术会议(HHME2007)论文集[C];2007年
6 朱岩;赵旭;刘允才;;基于稀疏编码和局部时空特征的人体动作识别[A];第十五届全国图象图形学学术会议论文集[C];2010年
7 席旭刚;金燕;朱海港;高云园;;基于小波包熵和支持向量机的手部肌电信号动作识别[A];2013年中国智能自动化学术会议论文集(第五分册)[C];2013年
中国重要报纸全文数据库 前4条
1 本报记者 陈丹;人与机器的“对话”[N];科技日报;2010年
2 ;凌空敲键盘?无线计算机手套问世[N];中国计算机报;2004年
3 疏影;国外博物馆如何玩转3D技术[N];中国文化报;2013年
4 编译 陶颖;嗅探能力超群 蜜蜂成防爆卫士[N];北京科技报;2006年
,本文编号:1067357
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1067357.html