改进的Meanshift运动目标跟踪算法
本文关键词:改进的Meanshift运动目标跟踪算法
更多相关文章: 三帧差分 Meanshift 运动目标跟踪 Kalman滤波
【摘要】:Meanshift算法在对快速运动的目标进行跟踪时容易丢失目标,并且在目标被遮挡时,也容易造成跟踪失败,跟踪的过程中跟踪框不能随着运动目标的大小变化而变化。提出一种基于Meanshift运动目标跟踪算法的改进算法。该算法基本思想是采用改进的三帧差分法对运动目标区域进行提取,求得跟踪框轮廓,同时用Meanshift算法对运动目标进行跟踪,获得目标最大概率区域,将该区域中心作为跟踪框的中心。跟踪过程中通过巴氏系数判断是否目标被遮挡,若被遮挡则调用Kalman滤波进行预测跟踪。实验结果表明,该算法能够快速、准确地跟踪目标。
【作者单位】: 宁夏大学物理电气信息学院;
【关键词】: 三帧差分 Meanshift 运动目标跟踪 Kalman滤波
【基金】:国家自然科学基金项目(61162020)
【分类号】:TP391.41
【正文快照】: 智能视频监控系统如今被广泛应用,它是计算机视觉领域中近些年来新兴起的一个研究方向。它主要是利用计算机视觉技术对采集到的视频图像信号进行处理、分析和理解,得到关键信息从而对视频监控系统进行控制,提高视频监控系统数字化水平。跟踪运动目标可以获得运动目标的运动状
【相似文献】
中国期刊全文数据库 前10条
1 金忠;一种多目标跟踪算法[J];南京理工大学学报(自然科学版);1985年S1期
2 龚萍;张辉;毛征;张庆龙;孔文超;;融合局部熵二维熵的空中目标跟踪算法研究[J];国外电子测量技术;2014年01期
3 马奔,史忠科,皮燕妮;成像目标跟踪算法分析[J];西安电子科技大学学报;2005年03期
4 孙中森;孙俊喜;宋建中;乔双;;一种抗遮挡的运动目标跟踪算法[J];光学精密工程;2007年02期
5 陈爱华;孟勃;朱明;王艳华;;多模式融合的目标跟踪算法[J];光学精密工程;2009年01期
6 牛长锋;刘玉树;;融合多特征的粒子滤波目标跟踪算法[J];华中科技大学学报(自然科学版);2010年01期
7 蔡荣太;吴元昊;王明佳;吴庆祥;;视频目标跟踪算法综述[J];电视技术;2010年12期
8 佟国峰;蒋昭炎;谷久宏;庞晓磊;;基于随机蕨丛的长期目标跟踪算法[J];东北大学学报(自然科学版);2013年01期
9 曹晓丽;李明;邢玉娟;谭萍;;几种自动目标跟踪算法的比较研究[J];硅谷;2013年02期
10 王鲁平,李飚,胡敏露;一种基于多传感器数据融合的目标跟踪算法[J];红外与激光工程;2004年02期
中国重要会议论文全文数据库 前10条
1 徐炳吉;;一种多站联合目标跟踪算法[A];数学及其应用文集——中南模糊数学和系统分会第三届年会论文集(上卷)[C];1995年
2 杜方芳;刘士荣;邱雪娜;;一种改进的粒子滤波目标跟踪算法[A];PCC2009—第20届中国过程控制会议论文集[C];2009年
3 付晓薇;方康玲;李曦;;一种基于特征的多目标跟踪算法[A];2003年中国智能自动化会议论文集(下册)[C];2003年
4 许伟村;赵清杰;;一种基于粒子滤波的多目标跟踪算法[A];2011年中国智能自动化学术会议论文集(第一分册)[C];2011年
5 李军;张华;单梁;;一种基于Mean shift和粒子滤波的综合目标跟踪算法[A];2009年中国智能自动化会议论文集(第七分册)[南京理工大学学报(增刊)][C];2009年
6 肖敬若;胡伏原;郑江滨;张艳宁;;一种有效的多目标跟踪算法[A];第十二届全国信号处理学术年会(CCSP-2005)论文集[C];2005年
7 郑黎义;陈兴无;王磊;李正东;;红外/雷达双传感器融合目标跟踪算法[A];中国工程物理研究院科技年报(2005)[C];2005年
8 张震宇;王立松;;基于粒子滤波的传感器目标跟踪算法[A];2008年中国高校通信类院系学术研讨会论文集(上册)[C];2009年
9 王亚楠;陈杰;甘明刚;;基于差分进化的改进粒子滤波目标跟踪算法[A];中国自动化学会控制理论专业委员会C卷[C];2011年
10 张涛;费树岷;胡刚;;基于多特征信息自适应融合的视频目标跟踪算法[A];第二十九届中国控制会议论文集[C];2010年
中国博士学位论文全文数据库 前10条
1 胡子军;基于随机有限集的雷达多目标跟踪算法研究[D];西安电子科技大学;2015年
2 王保宪;复杂背景下的视频目标跟踪算法研究[D];北京理工大学;2016年
3 张雷;复杂场景下实时目标跟踪算法及实现技术研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2016年
4 王晶晶;复杂拥挤环境下协同视频监控中目标跟踪算法研究[D];中国科学技术大学;2016年
5 卢建国;基于粒子滤波的视频目标跟踪算法研究[D];北京邮电大学;2011年
6 冯巍;分布式多视角目标跟踪算法研究[D];复旦大学;2011年
7 王书朋;视频目标跟踪算法研究[D];西安电子科技大学;2009年
8 刘晴;基于区域特征的目标跟踪算法研究[D];北京理工大学;2014年
9 邱雪娜;基于视觉的运动目标跟踪算法及其在移动机器人中的应用[D];华东理工大学;2011年
10 赵运基;基于视觉的目标跟踪算法研究[D];华南理工大学;2012年
中国硕士学位论文全文数据库 前10条
1 张健;形变目标跟踪算法的研究与实现[D];辽宁大学;2015年
2 张巧丽;基于LabVIEW的运动目标跟踪算法研究与实现[D];陕西科技大学;2015年
3 钟宝康;基于压缩感知的预测目标跟踪算法研究[D];江西理工大学;2015年
4 薛桐;基于CamShift的运动目标跟踪算法研究[D];沈阳理工大学;2015年
5 王增宇;基于稀疏表达的目标跟踪算法研究[D];沈阳理工大学;2015年
6 王静;结构化的表观模型及两阶段目标跟踪算法研究[D];沈阳理工大学;2015年
7 葛凯蓉;自然场景下目标跟踪算法的研究[D];山东大学;2015年
8 向伟;基于检测的目标跟踪算法研究[D];上海交通大学;2015年
9 单顺勇;结合多示例学习和模板匹配的目标跟踪算法研究[D];江西理工大学;2015年
10 张碧武;基于单目视觉的目标跟踪算法的研究与实现[D];电子科技大学;2015年
,本文编号:1124569
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1124569.html