基于支持向量机优化的行人跟踪学习检测方法
本文关键词:基于支持向量机优化的行人跟踪学习检测方法
【摘要】:提出一种基于SVM(Support Vector Machine)优化的TLD(Track-LearningDetection)行人检测跟踪算法.将行人作为正样本,背景作为负样本,提取出行人的HOG特征并投入线性SVM中进行训练,得到行人检测分类器,并标定出目标区域,实现行人自动识别;然后在TLD算法的基础上对行人进行跟踪和在线学习,估计检测出的正负样本并实时修正检测器在当前帧中的误检,利用相邻帧间特征点配准剔除误配点,同时更新跟踪器数据,以避免后续出现类似错误.实验表明,该算法能够适应遮挡变化且自动识别并稳定跟踪目标行人,较传统跟踪算法具有更强的鲁棒性.
【作者单位】: 湖南大学电气与信息工程学院;
【基金】:高等学校博士学科点专项科研基金资助项目(20130161110009) 湖南省自然科学基金资助项目(14JJ1011)
【分类号】:TP391.41;TP18
【正文快照】: 在计算机视觉应用中,长期稳定实时检测跟踪运动物体已经成为一个重要的研究课题,随着技术的不断成熟,该领域的应用也相当广泛,比如:工业生产、实时监督、自动目标定位、自动导航、人机交互、增强现实技术、SLAM、游戏开发等.研究人员根据实际应用的需要提出不同的跟踪方案,其
【相似文献】
中国期刊全文数据库 前10条
1 吴娟;范玉妹;王丽;;关于改进的支持向量机的研究[J];攀枝花学院学报;2006年05期
2 刘硕明;刘佳;杨海滨;;一种新的多类支持向量机算法[J];计算机应用;2008年S2期
3 尹传环;牟少敏;田盛丰;黄厚宽;;单类支持向量机的研究进展[J];计算机工程与应用;2012年12期
4 王云英;阎满富;;C-支持向量机及其改进[J];唐山师范学院学报;2012年05期
5 李逢焕;;试述不确定支持向量机应用分析及改进思路[J];中国证券期货;2012年12期
6 邵惠鹤;支持向量机理论及其应用[J];自动化博览;2003年S1期
7 曾嵘,蒋新华,刘建成;基于支持向量机的异常值检测的两种方法[J];信息技术;2004年05期
8 张凡,贺苏宁;模糊判决支持向量机在自动语种辨识中的研究[J];计算机工程与应用;2004年21期
9 魏玲,张文修;基于支持向量机集成的分类[J];计算机工程;2004年13期
10 沈翠华,邓乃扬,肖瑞彦;基于支持向量机的个人信用评估[J];计算机工程与应用;2004年23期
中国重要会议论文全文数据库 前10条
1 余乐安;姚潇;;基于中心化支持向量机的信用风险评估模型[A];第六届(2011)中国管理学年会——商务智能分会场论文集[C];2011年
2 刘希玉;徐志敏;段会川;;基于支持向量机的创新分类器[A];山东省计算机学会2005年信息技术与信息化研讨会论文集(一)[C];2005年
3 史晓涛;刘建丽;骆玉荣;;一种抗噪音的支持向量机学习方法[A];全国第19届计算机技术与应用(CACIS)学术会议论文集(下册)[C];2008年
4 何琴淑;刘信恩;肖世富;;基于支持向量机的系统辨识方法研究及应用[A];中国力学大会——2013论文摘要集[C];2013年
5 刘骏;;基于支持向量机方法的衢州降雪模型[A];第五届长三角气象科技论坛论文集[C];2008年
6 王婷;胡秀珍;;基于组合向量的支持向量机方法预测膜蛋白类型[A];第十一次中国生物物理学术大会暨第九届全国会员代表大会摘要集[C];2009年
7 赵晶;高隽;张旭东;谢昭;;支持向量机综述[A];全国第十五届计算机科学与技术应用学术会议论文集[C];2003年
8 周星宇;王思元;;智能数学与支持向量机[A];2005年中国智能自动化会议论文集[C];2005年
9 颜根廷;马广富;朱良宽;宋斌;;一种鲁棒支持向量机算法[A];2006中国控制与决策学术年会论文集[C];2006年
10 侯澍e,
本文编号:1147739
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1147739.html