快速优化筛选多尺度矩形域的二进制描述
本文选题:目标识别 + 特征描述 ; 参考:《中国图象图形学报》2016年03期
【摘要】:目的为更好地兼顾基于手动设置的二进制特征描述子优越的实时性能和基于优化学习的二进制特征描述子鲁棒的区分性能,提出一种快速优化筛选多尺度矩形域的二进制描述算法(MRFO),运用于识别卫星装配时所需的典型工件目标。方法按像素的灰度值和梯度方向划分图像并利用不同的高斯核函数进行平滑,建立多尺度的子图像集合;从多尺度的子图像中,快速通过约束条件提取候选矩形域;在训练阶段,通过优化学习计算候选矩形域的相关得分及最优阈值,筛选出其中具有强区分性和低相关性的集合;在测试阶段,计算筛选出的矩形域响应值并利用最优阈值进行二值化,将结果依次串联构成二进制描述向量。结果实验通过ROC曲线图和80%精确率条件下的召回率统计结果证明MRFO描述算法具有优越的区分性能,平均的精确度能够高出对比算法8%~12%;并在真实的视频图像中利用MRFO描述算法识别出典型工件目标;根据训练阶段的执行时间只有传统优化学习算法的4.35%,只是在测试阶段略高于手动设置的二进制描述算法,证明MRFO描述算法具有优良的实时性能。结论 MRFO描述算法能够更好地克服各种视角、尺度和旋转变换的干扰以及周围相似背景信息的影响,准确识别出典型工件目标,有助于提高卫星的地面装配精度和效率,改善国内相关行业的自动化水平。普遍适用性较强,具有良好的应用前景。
[Abstract]:For the purpose of better real-time performance based on both binary feature descriptor set manually and superior performance robust feature descriptor based on differentiated binary optimization study, we propose a fast binary optimization screening multi-scale rectangular domain description algorithm (MRFO), applied to the typical workpiece required during assembly. The satellite recognition method according to the pixel the gray value and gradient direction image partition and smoothing Gauss using different kernel functions, set sub image using multi scale; from the multi-scale sub image, fast constraints through the extraction of candidate rectangle; during the training phase, learning scores and the optimal threshold by computing the candidate rectangular domain optimization, which are selected from has a strong distinction and set low correlation; in the test phase, calculation of rectangular domain selected response value and optimal threshold for binarization, the results Which are connected in series to form a binary vector description. Experimental results by ROC curve and 80% accuracy under the condition of the recall rate statistical results show that MRFO algorithm has superior performance to describe the distinction, the average accuracy of high contrast 8%~12% algorithm; and in real video images in using MRFO description algorithm to identify typical workpiece according to the training objectives; the execution time is only 4.35% of the traditional optimization algorithm, only in the binary test phase is slightly higher than the manual setting description algorithm, prove that MRFO algorithm has good performance in real-time is described. Conclusion the MRFO description of the algorithm is better able to overcome the influence of various angle, rotation and scale transform and interference around similar background information, accurately identify typical parts, help to improve the accuracy and efficiency of satellite ground assembly, improve the automation level of the domestic industry generally. It has strong applicability and good application prospect.
【作者单位】: 河北工业大学机械工程学院;
【基金】:国家高技术研究发展计划(863)基金项目(2015AA043101)~~
【分类号】:TP391.41
【相似文献】
相关期刊论文 前10条
1 韩艳春;李智兰;曾宪文;;目标识别与分类方法[J];军事通信技术;2003年01期
2 杨建勋,史朝辉;基于模糊综合函数的目标识别融合算法研究[J];火控雷达技术;2004年04期
3 李彦鹏,施福忠,黎湘,庄钊文;基于模糊综合评判的目标识别效果评估[J];计算机应用研究;2005年03期
4 左峥嵘,张天序;集成证据提高目标识别性能的方法研究[J];华中科技大学学报(自然科学版);2005年03期
5 李彦鹏,黎湘,庄钊文;一种应用模糊聚类分析的目标识别效果评估方法[J];电子对抗技术;2005年03期
6 盖明久;吕世良;时宝;;一种概率更新方法及在目标识别中的应用[J];海军航空工程学院学报;2006年05期
7 张平定;王海军;王睿;;一种基于聚类思想的目标识别新方法[J];空军工程大学学报(自然科学版);2006年02期
8 贾宇平;付耀文;黎湘;庄钊文;;灰局势决策方法在决策层融合目标识别中的应用[J];信号处理;2007年04期
9 李静;黄峥;;静态傅里叶干涉具在目标识别中的应用研究[J];光谱学与光谱分析;2009年08期
10 黄瑶;熊和金;;目标识别的灰关联方法研究[J];湖南农业大学学报(自然科学版);2009年S1期
相关会议论文 前10条
1 王宇;钟秋海;;用统计模式识别方法建立海上目标识别的数学模型[A];1995中国控制与决策学术年会论文集[C];1995年
2 郑援;胡成军;;基于数据融合的鱼雷目标识别[A];第十四届全国信号处理学术年会(CCSP-2009)论文集[C];2009年
3 李夕海;赵克;慕晓冬;刘代志;;目标识别中的特征相空间吸引子分析[A];第十届全国信号处理学术年会(CCSP-2001)论文集[C];2001年
4 冯杰;盖强;古军峰;;模糊聚类分析方法在海上目标识别中的应用[A];第二届全国信息获取与处理学术会议论文集[C];2004年
5 赵克;刘代志;慕晓东;苏娟;;目标识别的特征量约束[A];第九届全国信号处理学术年会(CCSP-99)论文集[C];1999年
6 李正东;陈兴无;宋琛;何武良;;多传感器的目标识别[A];中国工程物理研究院科技年报(1999)[C];1999年
7 郭相科;刘进忙;曹学斌;张玉鹏;;子类独立分量分析在声目标识别中的应用[A];中国声学学会2007年青年学术会议论文集(上)[C];2007年
8 张翠;高广春;赵胜颖;;基于时间融合算法的近程目标识别[A];2011下一代自动测试系统学术研讨会论文集[C];2011年
9 俞鸿波;赵荣椿;;三维空间目标识别概述[A];信号与信息处理技术——第一届信号与信息处理联合学术会议论文集[C];2002年
10 曹健;陈红倩;毛典辉;李海生;蔡强;;基于局部特征的图像目标识别问题综述[A];2013年中国智能自动化学术会议论文集(第五分册)[C];2013年
相关重要报纸文章 前2条
1 莫衍崴 特约记者刘谦;上士白光斌:电话传音排故障[N];战士报;2012年
2 陈德潮邋本报特约通讯员 曹金平 刘剑;为潜艇铸“魂”[N];解放军报;2008年
相关博士学位论文 前10条
1 肖永生;射频隐身雷达信号设计与目标识别研究[D];南京航空航天大学;2014年
2 崔宗勇;合成孔径雷达目标识别理论与关键技术研究[D];电子科技大学;2015年
3 丁军;基于稀疏理论的SAR图像目标识别研究[D];西安电子科技大学;2015年
4 韩静;基于仿生视觉模型和复杂信息学习的多光谱夜视目标识别技术[D];南京理工大学;2014年
5 王海罗;基于视觉感知的无人机目标识别与跟踪技术研究[D];北京理工大学;2015年
6 舒锐;卫星目标识别与特征参数提取方法研究[D];哈尔滨工业大学;2010年
7 张池平;多传感器信息融合方法及其在空间目标识别中的应用[D];哈尔滨工业大学;2006年
8 李彦鹏;自动目标识别效果评估[D];国防科学技术大学;2004年
9 贾宇平;基于信任函数理论的融合目标识别研究[D];国防科学技术大学;2009年
10 张祥合;复杂场景中目标识别与分类的仿生原理和方法[D];吉林大学;2012年
相关硕士学位论文 前10条
1 许俊峰;基于模型的任意视点下三维目标识别研究[D];南京航空航天大学;2015年
2 李建;毫米波辐射计目标识别性能测试系统研究[D];南京理工大学;2015年
3 陈晨;红外/毫米波复合信号处理方法及电路设计[D];南京理工大学;2015年
4 王玉君;基于远红外热像仪的地面机动目标识别[D];沈阳理工大学;2015年
5 姚国伟;基于高分辨距离像的舰船目标识别研究[D];哈尔滨工业大学;2015年
6 周伟峰;基于神经网络的单目机器人目标识别定位研究[D];安徽工程大学;2015年
7 谭敏洁;基于压缩感知的雷达一维距离像目标识别[D];电子科技大学;2015年
8 王翔;基于局部神经反应的目标识别研究[D];华中师范大学;2015年
9 刘巍;基于非均匀采样图像的目标识别与跟踪算法研究[D];北京理工大学;2015年
10 田兵兵;基于核函数的SAR图像目标识别研究[D];电子科技大学;2015年
,本文编号:1771117
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1771117.html