当前位置:主页 > 科技论文 > 软件论文 >

基于图像分析的陕西苹果叶片病害识别系统设计与实现

发布时间:2018-04-20 17:53

  本文选题:斑点落叶病 + 花叶病 ; 参考:《西北农林科技大学》2017年硕士论文


【摘要】:随着苹果种植面积的逐渐增大,果树病害种类随之增多,在某种程度上就有可能导致苹果产成率的降低,从而会影响到果农的经济收益。为解决此问题,实验利用目前比较成熟的图像处理技术和自动识别技术来实现陕西关中地区苹果叶片各种病害的识别。本文介绍利用图像处理技术自动检测和识别苹果叶片病害的方法,优化病害图像预处理算法,并针对图像分割及模式识别部分算法开展研究。为避免在图像处理过程中受叶片背景影响,采用基于灰度形态学图像平滑方法。通过比较不同的图像分割算法,对分割后得到的病斑或病斑轮廓进行特征提取,找出最能代表病斑特征的数据,然后利用模式识别的方法来识别苹果叶片病斑的种类和名称。从病害的种类和性质上来说,斑点落叶病、锈病、花叶病是陕西关中区域较为普遍的果树病害,因此本文以此为研究对象,分析并提取其特征参数,同时,设计相应的苹果叶片病害识别系统。本课题内容主要包括以下几点:(1)收集苹果叶片斑点落叶病、锈病、花叶病3种病害图像,并对所有的病害图像进行图像增强、去噪等预处理操作。(2)对预处理后的图像进行图像分割操作,从多种苹果叶片图像中分离病斑图像,并提取出不同病斑的相关特征参数。(3)通过基于决策理论的模式识别方法对3种苹果叶片病害图像进行较为准确的识别。(4)设计苹果叶片病害识别系统。本文设计出一种基于MATLAB的苹果叶片病害识别系统,能够应用于生产实践中,使苹果叶片病害识别技术较好地服务于广大果农。
[Abstract]:With the increase of apple planting area, the variety of fruit diseases will increase, which may lead to the decrease of apple yield to some extent, which will affect the economic benefits of fruit farmers. In order to solve this problem, the current mature image processing technology and automatic recognition technology are used to realize the identification of apple leaf diseases in Guanzhong area of Shaanxi Province. In this paper, the method of automatically detecting and recognizing apple leaf diseases by image processing technology is introduced, and the image preprocessing algorithm is optimized, and some algorithms of image segmentation and pattern recognition are studied. In order to avoid the influence of leaf background in image processing, a grayscale morphological image smoothing method is adopted. By comparing different image segmentation algorithms, the feature extraction of the disease-spot or disease-spot contour was carried out, and the most representative data was found, and then the type and name of the disease spot in apple leaf was identified by pattern recognition. As far as the species and properties of the disease are concerned, spot leaf disease, rust disease and mosaic disease are common diseases of fruit trees in Guanzhong region of Shaanxi Province. Therefore, this paper takes this disease as the research object, analyzes and extracts its characteristic parameters, at the same time, The corresponding apple leaf disease recognition system was designed. The main contents of this paper include the following points: 1) collect the three disease images of apple leaf spot, rust and mosaic, and enhance all the disease images. Pre-processing operations such as de-noising. 2) segmenting images after preprocessing and separating diseased images from a variety of apple leaf images. The relative characteristic parameters of different disease spots were extracted. (3) the apple leaf disease recognition system was designed by using the pattern recognition method based on the decision theory to identify the three apple leaf disease images accurately. In this paper, an apple leaf disease identification system based on MATLAB is designed, which can be applied to the production practice and make the apple leaf disease identification technology better serve for the majority of fruit farmers.
【学位授予单位】:西北农林科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S436.611;TP391.41

【参考文献】

相关期刊论文 前10条

1 朱昊;;基于MATLAB图像增强技术研究[J];信息与电脑(理论版);2015年09期

2 彭红星;邹湘军;陈琰;杨磊;熊俊涛;陈燕;;基于演化算法的水果图像分割[J];农业工程学报;2014年18期

3 王献锋;张善文;王震;张强;;基于叶片图像和环境信息的黄瓜病害识别方法[J];农业工程学报;2014年14期

4 王琳;陈楚;吴正鹏;;历史航片特殊框标的自动内定向算法[J];测绘科学;2014年12期

5 钱建平;李明;杨信廷;吴保国;张勇;王衍安;;基于双侧图像识别的单株苹果树产量估测模型[J];农业工程学报;2013年11期

6 刁智华;王欢;宋寅卯;王云鹏;;复杂背景下棉花病叶害螨图像分割方法[J];农业工程学报;2013年05期

7 关雪梅;;基于空域的图像增强技术研究[J];赤峰学院学报(自然科学版);2012年08期

8 邓继忠;李敏;袁之报;金济;黄华盛;;基于图像识别的小麦腥黑穗病害特征提取与分类[J];农业工程学报;2012年03期

9 马时亮;马群;史国清;;基于MATLAB的激光光斑图像处理算法[J];工具技术;2011年08期

10 张华;展晓凯;;基于VC++的数字图像处理系统的设计与实现[J];潍坊学院学报;2011年02期

相关硕士学位论文 前2条

1 毕傲睿;苹果叶子病害图像识别系统的设计与实现[D];西安建筑科技大学;2014年

2 李宗儒;基于图像分析的苹果病害识别技术研究[D];西北农林科技大学;2010年



本文编号:1778799

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1778799.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户02499***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com