基于Leap Motion的人机交互技术的研究
发布时间:2018-04-25 06:15
本文选题:Leap + Motion ; 参考:《天津大学》2016年硕士论文
【摘要】:近年来,越来越多的人喜爱业余从事制陶等手工雕塑活动,但是进行真实的手工雕塑活动成本很高。本论文设计并实现了一种基于Leap Motion手势传感器的手工雕塑网页应用,在提供较为自然的用户体验的同时,又极大地降低了操作成本。本文将Leap Motion手部信息采集精度高的特性和WebGL标准相结合,提出了基于Leap Motion的手工雕塑网页应用。该应用允许用户将Leap Motion采集到的手部运动信息通过WebGL API控制3D物体的外形、缩放和颜色从而达到手工雕塑的效果。本论文的主要工作有:1.基于Leap API和WebGL,设计了可通过手势对3D图形进行加工的网页应用。2.为了模拟手工雕塑的操作,建立了一个类型较为全面的、规模较大的手势数据库。3.通过实验验证,选择基于HCNF的手势识别算法进行用户手势输入。4.根据多名用户在实际操作后评分的反馈,对应用的设计进行了改进。手工雕塑的应用进行测试的打分结果表明,相比于传统的键盘鼠标输入,基于Leap Motion的手工雕塑网页应用能够给用户带来更好的交互体验。
[Abstract]:In recent years, more and more people like to engage in artisanal sculpture activities such as pottery, but the cost of real sculpture activities is very high. This paper designs and implements a manual sculpture web page application based on Leap Motion gesture sensor, which not only provides a more natural user experience, but also greatly reduces the operation cost. This paper combines the high precision of Leap Motion hand information collection with WebGL standard, and puts forward the application of handmade sculpture web page based on Leap Motion. The application allows users to control the shape, scaling and color of 3D objects through WebGL API to achieve the effect of manual sculpture. The main work of this thesis is 1: 1. Based on Leap API and WebGL, a web application. 2. 2. In order to simulate the operation of manual sculpture, a more comprehensive, large-scale gesture database. 3. Through experimental verification, the user gesture recognition algorithm based on HCNF is selected to input. 4. The application design is improved according to the feedback from many users after practical operation. Compared with the traditional keyboard and mouse input, the manual sculpture web page application based on Leap Motion can bring users a better interactive experience than the traditional keyboard and mouse input.
【学位授予单位】:天津大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP391.41
【相似文献】
相关期刊论文 前10条
1 武霞;张崎;许艳旭;;手势识别研究发展现状综述[J];电子科技;2013年06期
2 ;新型手势识别技术可隔着口袋操作手机[J];电脑编程技巧与维护;2014年07期
3 任海兵,祝远新,徐光,
本文编号:1800094
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1800094.html