当前位置:主页 > 科技论文 > 软件论文 >

结合全局和局部信息的水平集图像分割方法

发布时间:2018-04-26 13:39

  本文选题:图像分割 + 图像噪声 ; 参考:《计算机应用研究》2017年12期


【摘要】:LBF模型对初始轮廓大小和位置非常敏感,并且只考虑了图像的局部信息,没有考虑图像的全局信息;CV模型利用图像全局信息,对初始轮廓具有较强的鲁棒性。两种模型对椒盐噪声污染的图像不能取得令人满意的结果。针对以上问题,在原有CV模型和LBF模型能量函数基础上,各自构造一个新的能量拟合项,增强对高斯噪声和椒盐噪声的抗噪性。采用新构造的CV模型,使用图像的全局信息得到粗分割轮廓;以粗分割轮廓作为新构造LBF模型的零水平集,利用图像的局部信息得到图像的精确分割结果。同时提出一种新的边缘检测算子,重新定义边缘停止函数,进一步提高模型的抗噪性。相较于CV和LBF模型,结合全局和局部信息的Wang和Qi模型,提出的模型能得到更优的图像分割结果,具有较强的抗噪性。
[Abstract]:The LBF model is very sensitive to the size and position of the initial contour and only considers the local information of the image. The CV model is robust to the initial contour by using the global information of the image without considering the global information of the image. The two models can not obtain satisfactory results for images contaminated with salt and pepper noise. Based on the energy functions of the original CV model and the LBF model, a new energy fitting term is constructed to enhance the noise resistance to Gao Si noise and salt and pepper noise. Using the newly constructed CV model, the rough segmentation contour is obtained by using the global information of the image, the rough segmentation contour is taken as the zero level set of the new LBF model, and the accurate segmentation result of the image is obtained by using the local information of the image. At the same time, a new edge detection operator is proposed, which redefines the edge stop function to further improve the noise resistance of the model. Compared with CV and LBF models, combined with Wang and Qi models with global and local information, the proposed model can obtain better image segmentation results and has strong anti-noise performance.
【作者单位】: 喀什大学计算机科学与技术学院;上海海洋大学信息学院;
【基金】:国家自然科学基金资助项目(61561027) 国家教育部青年专项资助项目(ECA150375) 新疆高校科研计划青年资助项目(XJEDU2016S076)
【分类号】:TP391.41

【相似文献】

相关期刊论文 前10条

1 李仲;图像分割的妙法[J];电脑知识与技术;2000年S2期

2 唐伟力;龙建忠;;一种基于降雨模型的图像分割方法在砾岩图像分割中的应用[J];成都信息工程学院学报;2007年02期

3 黄晓莉;曾黄麟;王秀碧;刘永春;;基于脉冲耦合神经网络的图像分割[J];信息技术;2008年09期

4 肖飞;綦星光;;图像分割方法综述[J];可编程控制器与工厂自动化;2009年11期

5 汪一休;;一种交互式图像分割的修正优化方法[J];中国科学技术大学学报;2010年02期

6 李丹;;图像分割方法及其应用研究[J];科技信息;2010年36期

7 龚永义;黄辉;于继明;关履泰;;基于熵的两区域图像分割[J];中国图象图形学报;2011年05期

8 张甫;李兴来;陈佳君;;浅谈图像分割方法的研究运用[J];科技创新与应用;2012年04期

9 汪梅;何高明;贺杰;;常见图像分割的技术分析与比较[J];计算机光盘软件与应用;2013年06期

10 魏庆;卢照敢;邵超;;基于复杂性指数的图像分割必要性判别技术[J];计算机工程与应用;2013年16期

相关会议论文 前10条

1 杨魁;赵志刚;;图像分割技术综述[A];2008年中国高校通信类院系学术研讨会论文集(下册)[C];2009年

2 杨暄;郭成安;李建华;;改进的脉冲耦合神经网络及其在图像分割中的应用[A];第十届全国信号处理学术年会(CCSP-2001)论文集[C];2001年

3 杨生友;;图像分割在医学图像中应用现状综述[A];2009中华医学会影像技术分会第十七次全国学术大会论文集[C];2009年

4 闫平昆;;基于模型的图像分割技术及其医学应用[A];第十五届全国图象图形学学术会议论文集[C];2010年

5 高岚;胡友为;潘峰;卢凌;;基于小生境遗传算法的SAR图像分割[A];可持续发展的中国交通——2005全国博士生学术论坛(交通运输工程学科)论文集(下册)[C];2005年

6 孙莉;张艳宁;胡伏原;赵荣椿;;基于Gaussian-Hermite矩的SAR图像分割[A];第十三届全国图象图形学学术会议论文集[C];2006年

7 李盛;;基于协同聚类的图像分割[A];第十四届全国图象图形学学术会议论文集[C];2008年

8 张利;许家佗;;舌象图像分割技术的研究与应用进展[A];中华中医药学会中医诊断学分会第十次学术研讨会论文集[C];2009年

9 秦昆;李振宇;李辉;李德毅;;基于云模型和格网划分的图像分割方法[A];《测绘通报》测绘科学前沿技术论坛摘要集[C];2008年

10 高惠琳;窦丽华;陈文颉;谢刚;;图像分割技术在医学CT中的应用[A];中国自动化学会控制理论专业委员会A卷[C];2011年

相关博士学位论文 前10条

1 白雪飞;基于视觉显著性的图像分割方法研究[D];山西大学;2014年

2 王辉;图像分割的最优化和水平集方法研究[D];电子科技大学;2014年

3 高婧婧;脑部MR图像分割理论研究[D];电子科技大学;2014年

4 潘改;偏微分方程在图像分割中的应用研究[D];东北大学;2013年

5 李伟斌;图像分割中的变分模型与快速算法研究[D];国防科学技术大学;2014年

6 邓晓政;基于免疫克隆选择优化和谱聚类的复杂图像分割[D];西安电子科技大学;2014年

7 李积英;融合量子衍生及DNA计算速率的智能算法在图像分割中的研究[D];兰州交通大学;2014年

8 王晓坤;基于宽视场拼接成像的目标分割与跟踪算法研究[D];长春理工大学;2016年

9 吴永飞;图像分割的变分模型及数值实现[D];重庆大学;2016年

10 李忠兵;聚焦超声无创治疗肿瘤的超声图像分割方法研究[D];武汉大学;2014年

相关硕士学位论文 前10条

1 王聪聪;手机上的交互式图像分割方法研究[D];华中科技大学;2013年

2 廖小波;基于贝叶斯最优统计的图切法图像分割研究[D];昆明理工大学;2015年

3 姜士辉;基于Android系统的立木图像分割方法研究[D];东北林业大学;2015年

4 路亚缇;基于粒子群优化算法的最大熵多阈值图像分割研究[D];郑州大学;2015年

5 刘超;基于阈值图像分割的研究及在苹果定位中的应用[D];东华理工大学;2015年

6 何妮;结合显著性目标检测与图像分割的服饰提取算法研究及实现[D];西南交通大学;2015年

7 刘晓磊;基于MRF随机场模型的机器人视觉图像分割方法研究[D];西安建筑科技大学;2015年

8 王周楠;数字图像处理的研究仿真[D];中国地质大学(北京);2015年

9 许素素;改进的模糊C均值聚类算法在图像分割中的应用[D];长安大学;2015年

10 齐国红;基于FCM和SVM相结合的作物病害图像分割方法研究[D];郑州大学;2015年



本文编号:1806246

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1806246.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户2cc70***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com