当前位置:主页 > 科技论文 > 软件论文 >

陀螺飞轮控制测量系统的设计与实现

发布时间:2018-04-27 14:21

  本文选题:陀螺飞轮 + 姿态控制 ; 参考:《哈尔滨工业大学》2017年硕士论文


【摘要】:近年来,随着微小航天器在航天航空领域的广泛应用,如何在保持性能的同时降低和简化航天器的体积质量成为当前研究热点。陀螺飞轮作为一种新型的姿态控制器件应运而生,该器件在提供三自由度控制力矩的同时,具有敏感航天器两轴角速度的能力。应用其作为姿控系统中的执行器和冗余的姿态敏感器,可以大幅简化姿控系统的结构,对于微小航天器的开发具有现实意义。为分析研究陀螺飞轮的工作特点并实现系统测试,本文搭建了一套可用于进行多种测试实验的陀螺飞轮控制与测量系统。首先,本文基于陀螺飞轮的机械结构,分析了其作为执行机构以及姿态敏感元件的工作原理,为后续搭建陀螺飞轮控制测量系统提供了基础理论。根据陀螺飞轮测试实验的需求,在对控制测量系统进行功能分析的基础上,设计了系统总体结构,将系统开发分为硬件模块和软件模块开发。在实验平台搭建完成后,根据需求分析—结构设计—编程实现的顺序,完成了系统中上位机软件的开发。上位机软件由非实时Win32进程和实时RTSS进程组成,其中非实时进程完成了人机交互、实时显示以及数据保存等任务;实时实时完成了控制测量、状态监测等任务。两个进程通过共享内存实现数据传递、通过事件对象实现进程同步。基于实时通信需求,本文开发了适用于RTX环境下进行数据采集发送的通信模块。随后,针对陀螺飞轮两维倾侧模型,本文设计了相应的控制器。首先,基于欧拉方程,联合陀螺飞轮物理特性,建立了完整动力学模型。随后对该模型进行相应的简化,得到了一个两输入两输出的耦合系统。基于解耦思想,选取了解耦控制方案,根据辨识实验中获取结果进行了解耦环节和校正环节参数选取。辨识结果中部分参数与转速相关,但变化范围不大。因此采用了固定解耦环节以及根据转速自适应选择解耦参数的两种解耦方案,通过仿真对比,发现自适应解耦可以达到更优秀的控制效果。最后,本文针对实际系统进行了一系列的验证实验。首先对软件进行了功能测试,测试结果表明上位机软件定时精度高、数据保存功能正确。随后,阐述了辨识实验过程及结果。同时,在样机中验证了两种解耦方案的解耦效果和校正环节的控制效果。实验结果表明陀螺飞轮系统可以稳定运行,同时能够快速跟踪指令。以上结果证明本文开发方法及控制方式合理,具有实际参考价值。
[Abstract]:In recent years, with the wide application of small spacecraft in aerospace field, how to reduce and simplify the volume mass of spacecraft while maintaining its performance has become a hot topic. As a new type of attitude controller gyroscope flywheel emerges as the times require. This device can provide three degrees of freedom control torque and at the same time it has the ability of sensitive spacecraft two-axis angular velocity. As the actuators and redundant attitude sensors in attitude control system, the structure of attitude control system can be greatly simplified, which is of practical significance for the development of small spacecraft. In order to analyze the working characteristics of gyroscope flywheel and realize the system test, a gyroscope flywheel control and measurement system is set up in this paper, which can be used for many kinds of test experiments. Firstly, based on the mechanical structure of the gyroscope flywheel, the working principle of the gyroscope flywheel as an actuator and attitude sensitive element is analyzed, which provides a basic theory for the subsequent construction of the gyroscope flywheel control and measurement system. According to the requirement of gyroscope flywheel testing experiment, based on the analysis of the function of the control and measurement system, the overall structure of the system is designed, and the system development is divided into hardware module and software module development. After the construction of the experimental platform, according to the order of requirement analysis, structure design and programming, the software of the upper computer in the system is developed. The upper computer software consists of non-real-time Win32 process and real-time RTSS process, in which the non-real-time process completes the tasks of human-computer interaction, real-time display and data saving, real-time control measurement, state monitoring and so on. The two processes achieve data transfer through shared memory and process synchronization through event objects. Based on the requirement of real-time communication, this paper develops a communication module suitable for data acquisition and transmission in RTX environment. Then, aiming at the two-dimensional tilting model of gyroscope flywheel, the corresponding controller is designed in this paper. Firstly, based on the Euler equation and the physical characteristics of gyroscope flywheel, a complete dynamic model is established. Then the model is simplified and a coupling system with two inputs and two outputs is obtained. Based on the decoupling idea, the decoupling control scheme is selected, and the parameters of decoupling and correction are selected according to the results obtained in the identification experiment. Some of the parameters in the identification results are related to the rotational speed, but the range is small. Therefore, two decoupling schemes are adopted, which are fixed decoupling and adaptive selection of decoupling parameters according to rotational speed. Through simulation and comparison, it is found that adaptive decoupling can achieve better control effect. Finally, a series of verification experiments are carried out for the actual system. Firstly, the software is tested, and the test results show that the software has high timing precision and correct data saving function. Then, the process and result of identification experiment are described. At the same time, the decoupling effect and control effect of the two decoupling schemes are verified in the prototype. The experimental results show that the gyroscope flywheel system can run stably and can track instructions quickly. The above results prove that the development method and control method of this paper are reasonable and have practical reference value.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:V441;TP311.52

【参考文献】

相关期刊论文 前10条

1 陈璐;袁建平;;基于双框架变速控制力矩陀螺的航天器姿态控制研究[J];电子设计工程;2014年23期

2 范志涵;张召才;;国外小卫星最新发展研究[J];国际太空;2013年08期

3 边志强;程卫强;薛孝补;于永江;;基于陀螺和星敏感器的卫星姿态确定算法[J];航天器工程;2011年02期

4 韩辅君;房建成;;磁悬浮飞轮转子系统的现场动平衡方法[J];航空学报;2010年01期

5 刘松林;卢连成;刘阳;李婷婷;刘晗;;美国军用卫星应急发射现状[J];导弹与航天运载技术;2008年04期

6 张连超;范大鹏;范世s,

本文编号:1811080


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1811080.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户dc62a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com