基于随机森林的玉米发育程度自动测量方法
本文选题:玉米果穗 + 发育程度 ; 参考:《农业机械学报》2017年01期
【摘要】:为提高玉米果穗发育程度检测的自动化程度与精度,提出一种基于机器视觉技术的测量方法。在随机森林机器学习算法的基础上构造秃尖、干瘪和籽粒区域的识别模型。该模型由多个独立同分布的弱分类器构成,对输入的训练样本进行列和行两个方向上的随机采样。比较随机森林模型和决策树模型的分类效果可知随机森林模型有效避免了过拟合和局部收敛现象的产生,并具有良好的推广能力。为确定最优的弱分类器数目,选择弱分类器个数为训练样本数量的1/80、1/40、1/20、1/10、1/5、1/4时分别构建随机森林分类器。研究结果表明,当随机森林中弱分类器个数为训练样本数量的1/20时,模型的识别率与稳定性最好。然后,以最优的随机森林模型作为分类器构建玉米果穗不同发育程度自动检测方法。试验结果表明,各区域长度测量的准确性均在95%以上,测量速度可达30个/min以上。
[Abstract]:In order to improve the automation and precision of corn ear development detection, a method based on machine vision was proposed. Based on the stochastic forest machine learning algorithm, a recognition model of bald tip, dry area and grain area is constructed. The model is composed of several independent and distributed weak classifiers. The input training samples are sampled randomly in both columns and rows. Comparing the classification effect of stochastic forest model and decision tree model, we can see that stochastic forest model can avoid overfitting and local convergence effectively, and has good generalization ability. In order to determine the optimal number of weak classifiers, a random forest classifier is constructed when the number of weak classifiers is 1 / 80 / 40 / 1 / 40 / 20 / 10 / 10 / 5 / 4 of the number of training samples. The results show that the recognition rate and stability of the model are the best when the number of weak classifiers in the random forest is 1 / 20 of the number of training samples. Then, the optimal stochastic forest model was used as classifier to construct the automatic detection method for different development degree of corn ear. The experimental results show that the accuracy of each region length measurement is more than 95%, and the measuring speed can reach more than 30 / min.
【作者单位】: 华中农业大学信息学院;华中农业大学理学院;
【基金】:国家自然科学基金项目(31301235)
【分类号】:S513;TP391.41
【相似文献】
相关期刊论文 前10条
1 张雷;王琳琳;张旭东;刘世荣;孙鹏森;王同立;;随机森林算法基本思想及其在生态学中的应用——以云南松分布模拟为例[J];生态学报;2014年03期
2 李旭青;刘湘南;刘美玲;吴伶;;水稻冠层氮素含量光谱反演的随机森林算法及区域应用[J];遥感学报;2014年04期
3 王盼;陆宝宏;张瀚文;张巍;孙银凤;季妤;;基于随机森林模型的需水预测模型及其应用[J];水资源保护;2014年01期
4 王栋;岳彩荣;田传召;范怀刚;王跃辉;;基于随机森林的大姚县TM遥感影像分类研究[J];林业调查规划;2014年02期
5 刘毅;杜培军;郑辉;夏俊士;柳思聪;;基于随机森林的国产小卫星遥感影像分类研究[J];测绘科学;2012年04期
6 吕淑婷;张启敏;;一类带Poisson跳的随机森林发展系统数值解的收敛性[J];宁夏大学学报(自然科学版);2010年04期
7 李治;杨晓梅;孟樊;范文义;;物候特征辅助下的随机森林宏观尺度土地覆盖分类方法研究[J];遥感信息;2013年06期
8 金宇;周可新;方颖;刘欣;;基于随机森林模型预估气候变化对动物物种潜在生境的影响[J];生态与农村环境学报;2014年04期
9 马明;岳彩荣;张云飞;李小婷;张博;;基于TM影像的土地覆盖分类比较研究[J];绿色科技;2014年03期
10 ;[J];;年期
相关会议论文 前7条
1 谢程利;王金桥;卢汉清;;核森林及其在目标检测中的应用[A];第六届和谐人机环境联合学术会议(HHME2010)、第19届全国多媒体学术会议(NCMT2010)、第6届全国人机交互学术会议(CHCI2010)、第5届全国普适计算学术会议(PCC2010)论文集[C];2010年
2 武晓岩;方庆伟;;基因表达数据分析的随机森林方法及算法改进[A];黑龙江省第十次统计科学讨论会论文集[C];2008年
3 张天龙;梁龙;王康;李华;;随机森林结合激光诱导击穿光谱技术用于的钢铁分类[A];中国化学会第29届学术年会摘要集——第19分会:化学信息学与化学计量学[C];2014年
4 相玉红;张卓勇;;组蛋白去乙酰化酶抑制剂的构效关系研究[A];第十一届全国计算(机)化学学术会议论文摘要集[C];2011年
5 张涛;李贞子;武晓岩;李康;;随机森林回归分析方法及在代谢组学中的应用[A];2011年中国卫生统计学年会会议论文集[C];2011年
6 冯飞翔;冯辅周;江鹏程;刘菁;刘建敏;;随机森林和k-近邻法在某型坦克变速箱状态识别中的应用[A];第八届全国转子动力学学术讨论会论文集[C];2008年
7 曹东升;许青松;梁逸曾;陈宪;李洪东;;组合树的集合体和后向消除策略去分类P-糖蛋白化合物[A];第十届全国计算(机)化学学术会议论文摘要集[C];2009年
相关博士学位论文 前4条
1 曹正凤;随机森林算法优化研究[D];首都经济贸易大学;2014年
2 雷震;随机森林及其在遥感影像处理中应用研究[D];上海交通大学;2012年
3 岳明;基于随机森林和规则集成法的酒类市场预测与发展战略[D];天津大学;2008年
4 李书艳;单点氨基酸多态性与疾病相关关系的预测及其机制研究[D];兰州大学;2010年
相关硕士学位论文 前10条
1 钱维;药品不良反应监测中随机森林方法的建立与实现[D];第二军医大学;2012年
2 韩燕龙;基于随机森林的指数化投资组合构建研究[D];华南理工大学;2015年
3 贺捷;随机森林在文本分类中的应用[D];华南理工大学;2015年
4 张文婷;交通环境下基于改进霍夫森林的目标检测与跟踪[D];华南理工大学;2015年
5 李强;基于多视角特征融合与随机森林的蛋白质结晶预测[D];南京理工大学;2015年
6 朱玟谦;一种收敛性随机森林在人脸检测中的应用研究[D];武汉理工大学;2015年
7 肖宇;基于序列图像的手势检测与识别算法研究[D];电子科技大学;2014年
8 李慧;一种改进的随机森林并行分类方法在运营商大数据的应用[D];电子科技大学;2015年
9 赵亚红;面向多类标分类的随机森林算法研究[D];哈尔滨工业大学;2014年
10 黎成;基于随机森林和ReliefF的致病SNP识别方法[D];西安电子科技大学;2014年
,本文编号:1814910
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1814910.html