无源UHF RFID双端口标签芯片模拟前端的关键电路研究
本文选题:射频识别(RFID) + 双端口标签 ; 参考:《天津大学》2016年硕士论文
【摘要】:随着物联网概念的提出和推广,RFID技术再次引起人们的极大关注。作为RFID系统中的核心部件,射频标签直接决定着RFID系统的性能。然而,目前绝大多数标签均采用单端口设计,即参与供电的射频能量和参与通信的射频信号来自同一天线。随着工作距离增大,天线接收的射频能量减小,难以同时满足供电和信号传递的要求,因此标签与阅读器之间的通信中断。为保证RFID系统的远距离通信,本文从系统架构和电路功耗两方面对标签进行研究。首先,本文提出了一种具有智能选择功能的双端口标签方案,并基于UMC 0.18μm CMOS工艺对标签中的智能选择电路模块进行分析与设计。其次,本文对射频标签中的整流电路、稳压电路、解调/调制电路模块进行优化设计,进一步降低标签功耗。最后,对本文设计的电路模块进行了版图绘制和后仿。本文主要研究工作如下:1.设计了包括比较器和单刀双掷开关的智能选择电路。在理论分析的基础上,设计了动态和静态两种不同结构的比较器电路,并对二者的性能参数做了对比分析。其次,本文分析了开关电路的基本原理和性能参数,设计了一种由MOS晶体管组成的单刀双掷开关。仿真结果表明,静态比较器电路的延时为56.2ns,电路功耗为463nW,满足系统低功耗的性能要求,而开关电路的插损为-0.64dB,隔离度为-45.8dB,端口回波损耗小于-21dB,电路端口匹配良好。2.设计了整流和稳压电路。其中,整流电路设计中的二极管采用零阈值MOS管代替常规MOS管,因而获得高的输出电压。稳压电路由启动电路、电压基准源和误差放大器构成。为降低功耗,启动电路在后续电路正常工作后断开工作,而误差放大器采用低功耗的简单两级运放结构。仿真结果表明,稳压电路可提供1.8V的稳定供电电压,保证标签中电路模块的正常工作,电路功耗为3μW。3.设计了ASK方式的解调和调制电路。为减小芯片面积,解调电路中迟滞比较器的参考电压从低通滤波电路中提取,替代传统的RC网络电路。调制电路设计是基于反向散射原理。仿真结果表明,在915MHz载波频率和40KHz调制信号频率下,解调电路可成功解调输入已调波信号,而调制电路可将标签信息加入载波信号中,完成数字信号向模拟信号的转变,两电路功耗分别为1.2μW和130nW。
[Abstract]:With the development of the concept of Internet of things and the promotion of RFID technology, people pay more attention to it again. As the core component of RFID system, RF tag directly determines the performance of RFID system. However, at present, most of the tags are designed with single port, that is, the RF energy supplied by the power supply and the radio frequency signal involved in the communication come from the same antenna. With the increase of the operating distance, the RF energy received by the antenna decreases and it is difficult to meet the requirements of both power supply and signal transmission, so the communication between the tag and the reader is interrupted. In order to ensure the remote communication of RFID system, this paper studies the tag from the aspects of system architecture and circuit power consumption. Firstly, a two-port label scheme with intelligent selection function is proposed, and the intelligent selection circuit module is analyzed and designed based on UMC 0.18 渭 m CMOS process. Secondly, this paper optimizes the design of rectifier circuit, voltage stabilizer circuit and demodulation / modulation circuit module in RF tag to further reduce the tag power consumption. Finally, the layout of the circuit module designed in this paper is plotted and post-imitated. The main research work of this paper is as follows: 1. An intelligent selection circuit including comparator and single pole double throw switch is designed. On the basis of theoretical analysis, a comparator circuit with two different structures, dynamic and static, is designed, and their performance parameters are compared and analyzed. Secondly, the basic principle and performance parameters of the switch circuit are analyzed, and a single pole double throw switch composed of MOS transistors is designed. The simulation results show that the static comparator circuit has a delay of 56.2ns and a power consumption of 463nW, which meets the performance requirements of the system with low power consumption, while the switch circuit has a insertion loss of -0.64dB, an isolation of -45.8dB, a port echo loss of less than -21dB, and a good match of the circuit ports. The rectifying and stabilizing circuits are designed. In the design of rectifier diode, zero threshold MOS transistor is used instead of conventional MOS transistor, so high output voltage is obtained. Voltage stabilizing circuit consists of startup circuit, voltage reference source and error amplifier. In order to reduce power consumption, the starting circuit is disconnected after the subsequent circuit works normally, while the error amplifier uses a simple two-stage operational amplifier structure with low power consumption. The simulation results show that the stable voltage of 1.8 V can be supplied, and the circuit module in the label can work normally. The power consumption of the circuit is 3 渭 W. 3. The demodulation and modulation circuit of ASK is designed. In order to reduce the chip area, the reference voltage of hysteresis comparator in demodulation circuit is extracted from low-pass filter circuit to replace the traditional RC network circuit. The design of modulation circuit is based on backscattering principle. The simulation results show that the demodulation circuit can demodulate the modulated signal successfully under the 915MHz carrier frequency and the 40KHz modulation signal frequency, and the modulation circuit can add the label information into the carrier signal to complete the conversion of digital signal to analog signal. The power consumption of the two circuits is 1.2 渭 W and 130 nW, respectively.
【学位授予单位】:天津大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP391.44;TN402
【相似文献】
相关期刊论文 前10条
1 李景生;;利用双端口RAM技术实现数据的高速传输[J];电子技术应用;1988年12期
2 张卫杰,王远,魏震生;双端口RAM的并口设计应用[J];国外电子元器件;2001年10期
3 徐勇,陆荣;双端口存贮器的实现[J];军事通信技术;1995年04期
4 郭炳辉;双端口RAM及其应用[J];半导体技术;1996年05期
5 赵建荣,李智勇,牛夏牧;双端口RAM存取操作的处理方法[J];电子技术应用;1996年06期
6 张延平;;双端口RAM在多机通信系统中的应用[J];集成电路应用;1995年01期
7 张奇志;双端口RAM在单片机系统中的应用[J];现代电子技术;2000年07期
8 刘伟,周玉梅,叶青;单向双端口SRAM的测试算法[J];固体电子学研究与进展;2005年01期
9 罗杰;一种基于双端口RAM的高速数据采集系统设计[J];微电子学与计算机;2001年06期
10 颜学龙;汤敏;;嵌入式双端口SRAM可编程内建自测试结构的设计[J];计算机测量与控制;2006年07期
相关会议论文 前4条
1 朱明;;一种利用双端口RAM传输变容量图像数据的方法[A];中国航空学会信号与信息处理专业全国第八届学术会议论文集[C];2004年
2 方湘艳;韩威;;基于FPGA技术的异步双端口RAM设计与实现[A];中国通信集成电路技术与应用研讨会论文集[C];2004年
3 钟荣;孙玉东;王锁泉;周庆云;朱忠;尹志勇;;管路声源双端口模型及源参数提取的测试分析方法[A];第十二届船舶水下噪声学术讨论会论文集[C];2009年
4 张浩;冯涛;李晓东;刘克;;多负载法确定管道中双端口声源特性[A];中国声学学会2009年青年学术会议[CYCA’09]论文集[C];2009年
相关重要报纸文章 前1条
1 李;3Com双端口网卡智能连接服务器[N];中国计算机报;2000年
相关硕士学位论文 前6条
1 杨琼华;嵌入式双端口SRAM中读写干扰问题的研究[D];上海交通大学;2015年
2 李美苓;无源UHF RFID双端口标签芯片模拟前端的关键电路研究[D];天津大学;2016年
3 宋亮;双端口测试器关键技术研究及其在Linux环境中的实现[D];西南交通大学;2007年
4 王振南;基于FPGA的TS over IP系统的设计与实现[D];东华大学;2015年
5 孟焕;55nm高速低功耗双端口寄存器文件的研究[D];安徽大学;2014年
6 曾飞;双端口测试器的可执行测试例生成系统研究与开发[D];西南交通大学;2006年
,本文编号:1822359
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1822359.html