当前位置:主页 > 科技论文 > 软件论文 >

基于仿生视觉的图像RST不变属性特征提取方法

发布时间:2018-05-20 22:01

  本文选题:RST不变属性特征 + 仿生物视觉感知 ; 参考:《仪器仪表学报》2017年04期


【摘要】:针对图像目标识别过程中易受旋转、缩放、平移及噪声影响的问题,提出一种仿生物视觉感知的RST不变属性特征提取方法,以提升形变目标的识别率与抗噪鲁棒性。受生物视觉感知机理启发,其皮质细胞经过多级变换后,能够最佳权衡图像选择性与不变性。为此,该方法设计成两个阶段。第1阶段中,受生物视觉在水平与垂直方向响应强烈的启发,提出Gabor滤波器与双极滤波器融合的filter-to-filter方向边缘检测方法。Gabor滤波作为底层滤波器平滑图像,通过高层水平与垂直方向双极滤波器检测边缘,构建方向边缘检测子。以增强特征提取的鲁棒性,提升边缘检测的准确度。在此基础上,模拟大脑视觉皮质细胞对线条响应强度的反馈,根据不同边缘方向及间距,度量图像线条的空间频率。设计空间频率间距检测子,将方向边缘图像映射至方向θ-间距I坐标系中。使原图像的旋转与比例缩放,在该坐标系上表现为水平与垂直方向变化。在第2阶段中,针对第1阶段输出图像,再次进行方向边缘检测与间距检测。将第1阶段中水平与垂直平移变换,转变为第2阶段的特征图中不变像素点,使图像具有RST不变性。通过实验统计分析,验证了本文特征的RST不变性及其识别能力。并与其他不变属性特征提取方法进行了识别率与复杂度比较,突显本方法对噪声的强鲁棒性与RST的高识别率。
[Abstract]:In order to improve the recognition rate and robustness of deformed targets, a RST invariant feature extraction method based on biologic vision perception is proposed to solve the problem that image target recognition is easily affected by rotation, scaling, translation and noise. Inspired by the mechanism of biological visual perception, the cortical cells can best balance image selectivity and invariance after multilevel transformation. For this reason, the method is designed in two stages. In the first stage, inspired by the strong response of biological vision in horizontal and vertical direction, a method of edge detection in filter-to-filter direction based on the fusion of Gabor filter and bipolar filter is proposed. Gabor filter is used as the smoothing image of bottom filter. A directional edge detector is constructed by using a high level horizontal and vertical bipolar filter to detect the edge. In order to enhance the robustness of feature extraction, improve the accuracy of edge detection. On this basis, the feedback of the visual cortical cells to the response intensity of the line was simulated, and the spatial frequency of the lines was measured according to the different edge directions and distances. The spatial frequency spacing detector is designed to map the direction edge image to the direction 胃-spacing I coordinate system. The rotation and scale of the original image are changed in horizontal and vertical directions in this coordinate system. In the second stage, direction edge detection and distance detection are performed again for the first stage output image. The horizontal and vertical translation in the first stage is transformed into the invariant pixels in the feature map of the second stage, which makes the image RST invariant. The RST invariance of the feature and its recognition ability are verified by the experimental statistical analysis. The recognition rate and complexity of this method are compared with other invariant attribute feature extraction methods, which show the strong robustness of this method to noise and the high recognition rate of RST.
【作者单位】: 中南大学信息科学与工程学院;湖南商学院计算机与信息工程学院;南昌大学机电工程学院;
【基金】:国家自然科学基金(61403426,61304253) 国家重点实验室开放基金(SKLMT-KFKT-201602,SKLRS-2017-KF-13)项目资助
【分类号】:TP391.41

【相似文献】

相关期刊论文 前10条

1 刘建忠;;图像边缘的数学结构分析[J];软件;2011年05期

2 陈文兵;张小磊;;基于图像边缘的能见度计算方法[J];微型电脑应用;2009年04期

3 曾友州;胡莹;曾伟一;郑晓霞;;提取数字图像边缘的算法比较[J];成都航空职业技术学院学报;2009年04期

4 潘卫国;鲍泓;何宁;;一种传统中国书画图像的二分类方法[J];计算机科学;2012年03期

5 周涛;陆惠玲;拓守恒;马竞先;杨德仁;;基于非凸区域下近似的图像边缘修补算法[J];宁夏大学学报(自然科学版);2012年01期

6 宋建中;;喷雾图像的自动分析[J];光学机械;1988年04期

7 张锦华;孙挺;;引入像点融合度修补的图像边缘化参差拼接实现[J];微电子学与计算机;2014年08期

8 张晓清;;抠图另一法[J];数字世界;2002年11期

9 潘泓;夏良正;;一种基于图像边缘的矩计算方法[J];模式识别与人工智能;2003年03期

10 毛玉萃;图像的物理内容和逻辑内容[J];微计算机应用;2005年06期

相关会议论文 前10条

1 陆成刚;陈刚;张但;闵春燕;;图像边缘的优化模型[A];'2002系统仿真技术及其应用学术论文集(第四卷)[C];2002年

2 王伟凝;余英林;张剑超;;图像的动感特征分析[A];第一届中国情感计算及智能交互学术会议论文集[C];2003年

3 韩焱;王明泉;宋树争;;工业射线图像的退化与恢复方法[A];新世纪 新机遇 新挑战——知识创新和高新技术产业发展(下册)[C];2001年

4 王强;王风;;一种保持图像几何特征的去噪模型[A];中国通信学会第五届学术年会论文集[C];2008年

5 王培珍;杨维翰;陈维南;;图像边缘信息的融合方案研究[A];中国图象图形学会第十届全国图像图形学术会议(CIG’2001)和第一届全国虚拟现实技术研讨会(CVR’2001)论文集[C];2001年

6 李大鹏;禹晶;肖创柏;;图像去雾的无参考客观质量评测方法[A];第十五届全国图象图形学学术会议论文集[C];2010年

7 漆琳智;张超;吴向阳;;引导滤波的单幅图像前景精确提取[A];浙江省电子学会2013学术年会论文集[C];2013年

8 张明慧;;基于模糊蒙片算法的CR图像边缘增强[A];第六届全国信息获取与处理学术会议论文集(1)[C];2008年

9 王亮亮;李明;高昕;;强模糊空间目标图像边缘获取方法研究[A];第九届全国光电技术学术交流会论文集(下册)[C];2010年

10 罗强;任庆利;;基于局部IFS理论提取图像边缘[A];第十二届全国图象图形学学术会议论文集[C];2005年

相关重要报纸文章 前3条

1 艾思平翻译;视频编码软件CCE SP2操作指南(9)[N];电子报;2009年

2 ;图像质量调整秘技[N];电脑报;2001年

3 艾思平翻译;视频编码软件CCE SP2操作指南(14)[N];电子报;2009年

相关博士学位论文 前10条

1 周静;基于忆阻器的图像处理技术研究[D];国防科学技术大学;2014年

2 贾茜;基于时—空域插值的图像及视频上采样技术研究[D];武汉大学;2014年

3 李照奎;人脸图像的鲁棒特征表示方法研究[D];武汉大学;2014年

4 郝红星;基于干涉相位图像构建数字高程模型的关键技术研究[D];国防科学技术大学;2014年

5 杨小义;图像特征识别算法及其在聋人视觉识别中的应用研究[D];重庆大学;2015年

6 温景阳;图像大容量、低失真可逆信息隐藏技术研究[D];兰州大学;2015年

7 李林;基于概率图模型的图像整体场景理解方法研究[D];电子科技大学;2014年

8 余汪洋;基于被动毫米波的隐匿物品探测方法研究[D];北京理工大学;2015年

9 孟凡满;图像的协同分割理论与方法研究[D];电子科技大学;2014年

10 缪君;基于多视图像的平面场景重建研究[D];南昌大学;2015年

相关硕士学位论文 前10条

1 李鹏远;图像检索算法研究及其在互联网教育中的应用[D];华南理工大学;2015年

2 万燕英;微聚焦X-ray图像自适应正则化去噪方法[D];华南理工大学;2015年

3 毛双艳;基于梯度域的图像风格化渲染方法的研究及其应用[D];华南理工大学;2015年

4 向训文;RGB-D图像显著性检测研究[D];华南理工大学;2015年

5 曾旭;基于聚类和加权非局部的图像稀疏去噪方法研究[D];天津理工大学;2015年

6 熊杨超;图像美学评价及美学优化研究[D];华南理工大学;2015年

7 王艳;图像视觉显著性检测方法及应用的研究[D];华南理工大学;2015年

8 郑露萍;图像二阶微分特征提取及人脸识别应用研究[D];昆明理工大学;2015年

9 王思武;基于太阳图像的特征提取和检索[D];昆明理工大学;2015年

10 曹静;基于暗通道先验算法的图像去雾处理[D];海南大学;2015年



本文编号:1916399

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1916399.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户4ceee***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com