基于Android手机的智能农机管理系统设计与实现
本文选题:农机管理 + Android智能手机 ; 参考:《西南大学》2017年硕士论文
【摘要】:随着农业机械化水平和农业信息化水平的快速发展,农机设备的管理显得越来越重要,然而,传统农机管理不到位,效率低、成本高;农机具配套不合理、原始资料容易丢失、资料查询困难;农机作业状态不明确、安全隐患多、维修困难、农机性能参数不确定、机手培训困难等诸多问题无法快速解决,农机管理越来越有必要。因为Android平台具有显著地开放性和宽泛自由地开发环境而被广泛应用,开发了大量功能丰富、实用便捷的手机APP软件。国内一些学者对农机管理APP的关键技术进行了研究,一些企业也开发了各自的手机农机管理APP系统,虽然解决了农机管理中的一些突出问题,但都存在系统功能简单、界面单一,各个农机管理APP之间独立存在数据共享差等问题,只是为“管”而“管”,智能性差、不易于推广。针对上述问题,本研究是在农机设备端安装数据采集装置采集农机技术参数与作业状态信息,并通过蓝牙上传至机手的手机,融合手机中的GPS/GIS数据信息、天气信息,再通过3G或4G网络上传至Internet网,向后台中心计算机实时上传监测数据,实时远程监控农机技术状态和作业状态,实现农机作业管理、机手在线培训、农机政策与信息共享的功能,为设备评价、投资决策提供依据,将农机使用者、管理机构、设计与生产企业、售后维修、配件供应、作业对象等实现联动,为大数据提供基础数据,同时还可以共享大数据,其主要研究内容包括:(1)对系统整体结构进行了设计。包括移动车载端数据采集硬件设计和农机管理APP软件设计,设计了系统的框架结构与功能,叙述系统开发手段与流程,确定农机技术状态判定和移动车载端数据采集系统的功能、接口和数据上传方式,拟定基于Android手机农机智能管理APP应用软件的功能模块。(2)设计并搭建了移动车载端数据采集系统。采用模块化设计原理,将移动车载端数据采集系统分为传感器收集与处理模块、控制模块、存储模块和基于蓝牙的无线传输模块;设计了基于CAN总线的电压型传感器、电流型传感器、数字型传感器和频率型传感器五种类型传感器接口电路,以满足农机设备多种技术状态参数的收集,同时各型传感器接口与控制模块也采用CAN总线通信;农机设备工作状态参数不仅可以通过蓝牙模块上传至机手手机,同时还可以存储于存储模块,便于历史数据查询。(3)利用手机GPS/A-GPS的定位数据,并融合农业GIS系统,对农机设备的精确定位进行了研究。通过基于智能手机A-GPS的位置业务数据,作为农机设备的定位参数,大大提高其定位精度,融合农业GIS系统,并对采集的农机坐标值进行剔除和算术平均处理以获得精确高地作业农机位置经、纬度坐标信息,为农机设备作业面积计算提供依据。(4)提出了基于包络线的作业面积算法,并进行了详细研究。基于包络线的作业面积算法是指实时采集农机地理位置信息,选择出农机作业运动边界点的坐标值,利用曲线拟合的方法求解边界包络线的函数解析式,进一步利用积分法求解包络线的面积,所求区域的面积即为农田区域的作业面积。(5)开发了基于Android手机的“智慧农机管理系统”软件。通过对应用需求的分析,设置了包括农机作业、农机服务、机手培训和农机与机手信息四大模块,每一级模块下又设置了多个二级模块;全面阐述了系统的开发过程和设计要求,详细叙述了软件开发环境的搭建;设计了软件开发的功能和各个部分的调用关系。(6)搭建了试验平台,对系统的各项功能、定位、监控和作业面积等进行了相应试验。试验结果表明:系统运行稳定、功能齐备有效;定位精度与传统GPS器定位相比明显提高;在400m2、1000m2、1600m2、2000m2的空地作业面积进行测试,农机作业面积的相对误差在1.4%~2.085%左右。对包络线面积法在满幅作业模式和重叠作业模式下两种作业模式下实验,结果显示误差变化不大,包络线法可以有效的防止重叠作业。
[Abstract]:With the development of agricultural mechanization level and the rapid development of agricultural information level, the management of agricultural machinery equipment is becoming more and more important. However, the traditional agricultural machinery management is not in place, the efficiency is low, the cost is high, the agricultural equipment is not reasonable, the original data is easy to lose, the data query is difficult, the agricultural machine operation condition is not clear, the safety hidden danger is many, the maintenance difficulties, machinery machinery are difficult. Many problems, such as the uncertainty of performance parameters, the difficulty of the training of the machine hand and so on, can not be solved quickly. The agricultural machinery management is becoming more and more necessary. Because the Android platform is widely used for its remarkable openness and wide free development environment, a large number of functional and convenient mobile APP software have been developed. Some domestic scholars have closed the agricultural machinery management APP. The key technology has been studied, and some enterprises have developed their own APP system of agricultural machinery management. Although some outstanding problems in agricultural machinery management have been solved, there are simple system functions, single interface and independent data sharing among various agricultural machinery management APP, which are only "pipe" and "pipe", and the intelligence is poor and is not easy. In order to solve the above problems, this research is to collect the information of agricultural machinery technical parameters and operation state in the equipment end of agricultural machinery equipment, and upload it to the handset of the machine by Bluetooth, and fuse the GPS/GIS data information and weather information in the mobile phone, then upload it to the Internet network through the 3G or 4G network, and upload it to the backstage center computer in real time. The measurement data, real-time remote monitoring of agricultural machinery technical status and operation state, realizing agricultural machinery operation management, on-line training of machine hand, function of agricultural machinery policy and information sharing, providing basis for equipment evaluation and investment decision, and realizing linkage between agricultural machinery users, management institutions, design and production enterprises, after-sale maintenance, spare parts supply and operating objects. The data provides the basic data and can also share the large data. The main contents of the research include: (1) the overall structure of the system is designed. The design of the hardware design of the mobile terminal data acquisition and the APP software design of agricultural machinery management, the framework and function of the system are designed, the system development means and processes are described, and the technical state of agricultural machinery is determined. To determine and move the function of the data acquisition system, interface and data upload mode, the function module of APP application software based on Android mobile machinery intelligent management is designed. (2) the mobile terminal data acquisition system is designed and built. The module design principle is used to divide the data acquisition system of the EMU to the sensor collection and Processing module, control module, storage module and wireless transmission module based on Bluetooth, and five types of sensor interface circuits based on CAN bus voltage sensor, current type sensor, digital sensor and frequency type sensor are designed to meet the collection of various technical state parameters of agricultural machinery equipment, and each type of sensor interface is used. The control module also uses CAN bus communication; the working state parameters of agricultural machinery equipment can not only be uploaded to the handset by the Bluetooth module, but also can be stored in the storage module to facilitate the query of historical data. (3) using the location data of the mobile phone GPS/A-GPS and integrating the agricultural GIS system, the precise positioning of agricultural machinery equipment is studied. Based on the location service data of the smart phone A-GPS, as the location parameter of agricultural machinery equipment, the positioning precision is greatly improved, the agricultural GIS system is fused, and the coordinate values of the agricultural machinery are eliminated and the arithmetic average processing is used to obtain the accurate position of agricultural machinery and the latitude sitting information, which provides the basis for the calculation of the operating area of agricultural machinery equipment. (4) the operation area algorithm based on envelope line is proposed and studied in detail. The operation area algorithm based on envelope line refers to the real-time collection of agricultural machinery geographical location information, select the coordinate value of the movement boundary point of agricultural machinery operation, and use the curve fitting method to solve the function analytic formula of the boundary packet line, and further use the integral method to find out. To unpack the area of the collaterals, the area of the area is the operating area of the farmland area. (5) the "intelligent agricultural machinery management system" software based on the Android mobile phone is developed. Through the analysis of the application requirements, four modules are set up, including agricultural machinery operation, agricultural machinery service, machine hand training and agricultural machinery and hand information, and each module is set under each module. The development process and design requirements of the system are described in detail. The construction of the software development environment is described in detail. The function of the software development and the calling relationship of each part are designed. (6) a test platform is built, and the functions, location, monitoring and operation area of the system are tested. The test results show that: The system runs steadily, the function is effective and the positioning accuracy is obviously improved compared with the traditional GPS positioning. The relative error of the agricultural machinery area is about 1.4%~2.085% in the air area of 400m21000m21600m22000m2, and the envelope area method is under two operating modes under full amplitude operation mode and overlapping operation mode. The result shows that there is little change in the error. The envelope method can effectively prevent overlapped operations.
【学位授予单位】:西南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP311.52;S22
【参考文献】
相关期刊论文 前10条
1 ;我省全力推进“互联网+”与现代农业融合发展[J];吉林农业;2017年05期
2 ;延边州大力推进“互联网+现代农业”服务“三农”[J];吉林农业;2017年01期
3 孙云云;江朝晖;陈yN琼;马友华;;基于Android手机的农机作业补贴监管信息采集[J];安徽农业科学;2016年34期
4 徐婷婷;;大力推进“互联网+”现代农业发展研究[J];现代交际;2016年20期
5 屈冬玉;;智慧城乡 你我缔造 大力推进“互联网+”现代农业 促进城乡发展一体化[J];农业工程技术;2016年27期
6 周宇;尹生强;王冬青;王英杰;;基于Eclipse和Android系统的App开发平台搭建研究[J];青岛大学学报(工程技术版);2016年03期
7 毕京学;甄杰;郭英;;Android手机GPS和A-GPS定位精度分析[J];测绘通报;2016年07期
8 罗锡文;廖娟;胡炼;臧英;周志艳;;提高农业机械化水平促进农业可持续发展[J];农业工程学报;2016年01期
9 ;全国千万农机手朋友信息致富的掌中宝[J];湖北农机化;2015年05期
10 张连宽;谢文亮;肖德琴;黄顺彬;黎培瀚;;基于Android移动终端的作物图像采集系统[J];嘉应学院学报;2015年08期
相关硕士学位论文 前10条
1 张晓东;基于Android的农机深松作业监控与服务系统设计与实现[D];山东农业大学;2016年
2 马一棉;基于STM32的嵌入式农田信息采集系统设计与实现[D];西北农林科技大学;2016年
3 段明辉;基于Android平台的远程节水灌溉控制系统的设计与实现[D];北方民族大学;2016年
4 魏苇;基于差分GPS的变电站巡检机器人定位导航系统的研究[D];哈尔滨工业大学;2015年
5 马志欣;基于Android平台的水稻生长田间管理辅助决策系统[D];黑龙江八一农垦大学;2015年
6 辛德奎;基于北斗/GPS双模的田间作业机车工况监测系统[D];黑龙江八一农垦大学;2015年
7 邓晓栋;基于Android平台的温室大棚环境因子远程测控系统的设计与实现[D];海南大学;2015年
8 胡明芳;基于Android平台对传统作业管理系统的改造[D];华中师范大学;2015年
9 王莎;联合收割机智能监测系统开发[D];河北工业大学;2015年
10 任重远;农业机械化在农业中的应用与发展[D];山西农业大学;2014年
,本文编号:1931256
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1931256.html