基于机器人场景交互的人脸识别系统的设计与实现
发布时间:2018-05-28 07:17
本文选题:场景化 + 人脸识别 ; 参考:《北京交通大学》2017年硕士论文
【摘要】:眼下,正是一个智能机器人爆发的时代,无论是工业机器人还是特种机器人、家用机器人,机器人时代到来正带给现代社会和现代人各种惊喜。对于现代社会中忙碌于工作的年轻父母们而言,他们利用机器人为孩子提供更好陪伴的梦想也正在变得触手可及。基于机器人场景交互的人脸识别系统是儿童教育机器人的一个重要模块,目的是让机器人识别不同的人物角色,从而有目的进行交互,使得机器人更加智能化,更容易融入到人们的生活场景中。基于机器人场景交互的人脸识别系统是应用在人们生活的具体场景之中。生活场景是丰富多样的,所以要想让机器人自然的融入人类的生活场景中,需要尽可能的丰富其场景处理能力。这个问题需要从两个方面来解决,一方面可以尽量多的增加场景逻辑,考虑到生活中尽可能多的场景;另一方面,提高场景的适用性,用少量的场景逻辑来处理现实中多个场景。本文使用人脸识别相关技术,来实现机器人场景化中的认识新朋友和与好朋友打招呼两个场景。首先,本文介绍了系统的实际应用背景和人脸识别在系统中的应用。同时,也介绍了人脸识别的相关背景和国内外的发展现状。其次,结合系统的业务需求,确定了系统的总体架构和模块划分,以及各个模块之间的交互流程。最后,本文详细阐述了基于机器人场景交互的人脸识别系统的实现过程,该部分是本文的重点。本文的创新点包括以下几个方面:首先,本文将人脸识别算法应用在机器人与人类实际交互的场景中,具有实际的应用意义;其次,在特征提取的算法中,将CNN结构的倒数第二层全连接层的结果作为人脸的特征保存,这种方法不仅保留了 CNN的识别准确度,又提高了特征提取的效率;最后,将场景化实现与视觉算法实现分离,提高了系统的可扩展性。
[Abstract]:At present, it is an era of intelligent robot explosion, whether industrial robot or special robot, home robot, robot era is bringing modern society and modern people a variety of surprises. For the busy young parents of modern society, their dream of using robots to provide better companionship for their children is also becoming within reach. The human face recognition system based on robot scene interaction is an important module of children education robot. The purpose of this system is to let the robot recognize different personas, so that the robot can interact purposefully and make the robot more intelligent. It's easier to fit into people's life scenes. The human face recognition system based on robot scene interaction is applied in the concrete scene of people's life. The life scene is rich and diverse, so if we want the robot to integrate into the human life scene naturally, we need to enrich its scene processing ability as much as possible. This problem needs to be solved from two aspects. On the one hand, the logic of the scene can be increased as much as possible, taking into account as many scenes as possible in life; on the other hand, the applicability of the scene can be improved. Use a small amount of scenario logic to handle multiple scenarios in reality. In this paper, face recognition related techniques are used to realize the two scenes of new friends and good friends in robot scene. Firstly, this paper introduces the practical application background of the system and the application of face recognition in the system. At the same time, it also introduces the background of face recognition and the development situation at home and abroad. Secondly, according to the business requirements of the system, the overall architecture and module partition of the system are determined, as well as the interaction flow between each module. Finally, this paper describes the realization process of the robot scene interactive face recognition system in detail, which is the focus of this paper. The innovation of this paper includes the following aspects: first, this paper applies face recognition algorithm to the actual interaction between robot and human, which has practical application significance; secondly, in the feature extraction algorithm, This method not only preserves the recognition accuracy of CNN, but also improves the efficiency of feature extraction. Finally, the realization of scene is separated from the realization of visual algorithm. The expansibility of the system is improved.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41;TP242
【参考文献】
相关期刊论文 前10条
1 严严;陈日伟;王菡子;;基于深度学习的人脸分析研究进展[J];厦门大学学报(自然科学版);2017年01期
2 邹修明;孙怀江;杨赛;;基于概率隐含语义分析模型的人脸识别算法[J];南京理工大学学报;2016年05期
3 邢玲;冯倩;穆国旺;;基于卷积神经网络和PCA的人脸识别[J];河北工业大学学报;2016年05期
4 余丹;吴小俊;;一种卷积神经网络和极限学习机相结合的人脸识别方法[J];数据采集与处理;2016年05期
5 刘万军;梁雪剑;曲海成;;基于双重优化的卷积神经网络图像识别算法[J];模式识别与人工智能;2016年09期
6 陈耀丹;王连明;;基于卷积神经网络的人脸识别方法[J];东北师大学报(自然科学版);2016年02期
7 朱陶;任海军;洪卫军;;一种基于前向无监督卷积神经网络的人脸表示学习方法[J];计算机科学;2016年06期
8 文孟飞;胡超;刘伟荣;;一种基于深度学习的异构多模态目标识别方法[J];中南大学学报(自然科学版);2016年05期
9 胡亚君;;卷积神经网络在人脸识别的应用[J];无线互联科技;2016年09期
10 张丹丹;李雷;;基于PCANet-RF的人脸检测系统[J];计算机技术与发展;2016年02期
,本文编号:1945806
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1945806.html