大数据相关关系的因果派生类型
发布时间:2018-07-10 08:02
本文选题:大数据 + 相关关系 ; 参考:《求实》2017年07期
【摘要】:相关关系及其与因果关系的关联是大数据时代人们关注越来越多的难题。本文在重新刻画的因果概念基础上,由原因和结果是对因素相互作用过程与其效应之间关系的描述,通过表明相关关系是因果派生关系,探索了相关关系的因果派生的三种基本类型:(1)因素和结果间相关关系,包括直接因素和直接结果间、直接因素和间接结果间、间接因素与直接结果间、间接因素与间接结果间相关关系;(2)结果间相关关系,包括直接结果内部要素间、间接结果间相关关系;(3)因素间相关关系,包括现实因素间和潜在因素间相关关系。
[Abstract]:The correlation and its relation to causality are more and more difficult problems in the era of big data. On the basis of the re portrayal of the concept of causation, this paper describes the relationship between the process of interaction and the effect of the interaction between factors and the results, and by showing that the correlation is a causal relationship, the causation of the relationship is explored. Three kinds of derived basic types: (1) the correlation between factors and results, including direct and direct results, direct and indirect results, indirect and direct results, indirect and indirect results; (2) the correlation between results, including direct results, indirect results; (3) The correlation among elements includes the correlation between real factors and potential factors.
【作者单位】: 上海大学社会科学学部;
【基金】:2017年国家社会科学基金重点项目“大数据相关关系和因果关系研究”
【分类号】:TP311.13-02
【相似文献】
相关会议论文 前1条
1 徐勤;;影响交通的直接和间接因素[A];新观点新学说学术沙龙文集46:城市发展与交通方式创新[C];2010年
,本文编号:2112738
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2112738.html