当前位置:主页 > 科技论文 > 软件论文 >

人脸识别中光照补偿方法的研究及FPGA实现

发布时间:2018-07-13 18:43
【摘要】:人类主要依赖视觉系统获取外界信息,一旦视觉通路发生病变或者损伤就会导致人类视力的衰弱甚至失明,作为一种新型的辅助设备,视觉假体能够通过电刺激视觉神经系统使患者产生光幻视,帮助盲人重见光明。在视觉假体的辅助下,盲人是可以完成日常生活中的人脸识别任务的,然而在实际应用中复杂的光照变化会导致人脸识别率的下降,因此对光照变化下的人脸图像进行光照补偿具有很重要的意义。本文针对单尺度Retinex算法的光晕缺陷,从硬件实现的角度上提出了改进的基于双边滤波的单尺度Retinex算法。在用双边滤波对图像的光照分量进行估计的基础上,对对数域中图像反射分量进行自适应亮度调整。通过将经典的单尺度Retinex算法(SSR)、多尺度Retinex算法(MSR)、基于双边滤波的SSR算法和本文改进算法进行MATLAB仿真。试验结果表明改进算法能够有效地消除各种条件下的光照影响,具有较好的光照鲁棒性,并且与经典的MSR算法相比亮度提升了 26%,对比度提升了 23%,在ExtendedYaleB人脸库上的平均人脸识别率较经典的Retinex算法提升了 13%,在人脸识别系统的应用中具有很强的适用性。本文完成了光照补偿算法的FPGA硬件实现,并利用ModelSim对各个模块进行了功能仿真。然后在DE2-115开发板上搭建相关硬件平台对算法进行了功能性验证。为了直观地验证算法对不同图像的处理效果,本文通过串口输入数据到算法处理模块,并用VGA显示处理后的图像。同时通过SignalTap Ⅱ捕获算法处理的图像数据与matlab的软件结果对比。最终硬件验证结果表明,本文提出的算法在硬件上取得了与软件相同的处理效果,能够在消除图像光照影响的同时,显现增强人脸暗部区域的轮廓细节。
[Abstract]:People rely mainly on the visual system to obtain external information. Once the visual pathway changes or damages, it will lead to human vision decline or even blindness, as a new type of auxiliary equipment. Visual prostheses can help blind people rediscover light by electrical stimulation of the visual nervous system. With the aid of visual prosthesis, blind people can complete the task of face recognition in daily life. However, in practical applications, complicated illumination changes will lead to the decline of face recognition rate. Therefore, it is very important to compensate face images with illumination. Aiming at the halo defect of single-scale Retinex algorithm, an improved single-scale Retinex algorithm based on bilateral filtering is proposed from the point of view of hardware implementation. On the basis of estimating the illumination component of the image by using bilateral filtering, the image reflection component in logarithmic domain is adjusted adaptively. The classical single-scale Retinex algorithm (SSR), the multi-scale Retinex algorithm (MSR), the two-sided filter based SSR algorithm and the improved algorithm are simulated in MATLAB. The experimental results show that the improved algorithm can effectively eliminate the illumination effect under various conditions, and has better illumination robustness. Compared with the classical MSR algorithm, the brightness and contrast are improved by 26% and 23% respectively. The average face recognition rate in extended YaleB face database is 13% higher than that in the classical Retinex algorithm. It has strong applicability in the application of face recognition system. In this paper, FPGA hardware implementation of illumination compensation algorithm is completed, and each module is simulated by ModelSim. Then build the related hardware platform on the DE2-115 development board to verify the function of the algorithm. In order to intuitively verify the processing effect of the algorithm to different images, this paper input data into the algorithm processing module through serial port, and display the processed image with VGA. At the same time, the image data processed by signal Tap II acquisition algorithm is compared with the results of matlab software. Finally, the hardware verification results show that the proposed algorithm achieves the same processing effect as the software in hardware, which can eliminate the influence of image illumination and show the contour details of the enhanced dark area of the face at the same time.
【学位授予单位】:西安理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41

【参考文献】

相关期刊论文 前10条

1 陈超;;改进单尺度Retinex算法在图像增强中的应用[J];计算机应用与软件;2013年04期

2 袁琳;陈暄;龙丹;;光照变化条件下的人脸识别技术研究[J];计算机工程与应用;2014年04期

3 吴小贝;陆燕玉;王静;柴新禹;;仿真假体视觉下的人脸识别研究进展[J];中国医学物理学杂志;2012年04期

4 杨大为;王琰;;一种人脸识别中的光照补偿方法[J];计算机应用;2012年S1期

5 孙劲光;李扬;孟祥福;刘军立;;改进的单尺度Retinex及其在人脸识别中的应用[J];计算机应用研究;2011年12期

6 刘笃晋;孙淑霞;李思明;;人脸识别中光照处理方法的分析[J];计算机系统应用;2011年01期

7 胡韦伟;汪荣贵;方帅;胡琼;;基于双边滤波的Retinex图像增强算法[J];工程图学学报;2010年02期

8 葛微;李桂菊;程宇奇;薛陈;朱明;;利用改进的Retinex进行人脸图像光照处理[J];光学精密工程;2010年04期

9 纪则轩;陈强;孙权森;夏德深;;基于双边滤波的单尺度Retinex图像增强算法[J];微电子学与计算机;2009年10期

10 许欣;陈强;王平安;孙怀江;夏德深;;消除光晕现象的快速Retinex图像增强[J];计算机辅助设计与图形学学报;2008年10期

相关硕士学位论文 前7条

1 宋浩东;基于Retinex的变化光照条件下人脸识别研究[D];北京化工大学;2014年

2 黄震川;基于噪声估计的DR图像处理算法研究[D];华南理工大学;2014年

3 秦攀;光照鲁棒的人脸检测和人脸识别方法研究[D];华东理工大学;2014年

4 李俊峰;双边滤波算法的快速实现及其在图像处理的应用[D];南方医科大学;2013年

5 王海洋;人脸光照矫正算法研究与实现[D];电子科技大学;2013年

6 王良勤;人脸识别中光照预处理与识别算法的研究[D];华中科技大学;2008年

7 陈雾;基于Retinex理论的图像增强算法研究[D];南京理工大学;2006年



本文编号:2120391

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2120391.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户101cc***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com