个性化推荐中协同过滤算法研究
[Abstract]:With the rapid development of information technology and network technology, there are more and more ways for people to obtain information. However, the explosive growth of information in the network makes users lost in the ocean of information, and it is more and more difficult to accurately retrieve the information they really need. That is, the phenomenon of information overload. In order to solve this problem, personalized recommendation system emerges as the times require, it does not need users to input any information actively, through analyzing the historical behavior of users to build user interest model, thus actively recommend the information that users may be interested in. The core of personalized recommendation system is its recommendation algorithm. Among many recommendation algorithms, collaborative filtering recommendation algorithm is the most widely studied and widely used recommendation algorithm. In this paper, the workflow of collaborative filtering recommendation algorithm is analyzed in detail, and an improved collaborative filtering recommendation algorithm is proposed to improve the recommendation quality of recommendation system. The main work of this paper is as follows: (1) aiming at the sparsity of scoring matrix data, an improved collaborative filtering algorithm is proposed. Firstly, the whole itemset is clustered according to the item attributes. Then, Slope one algorithm is used to fill each cluster, and the weighted similarity of users on each cluster is used to calculate the user similarity. (2) the traditional collaborative filtering recommendation algorithm relies on the score data to recommend. Not taking into account the change of user interest over time, the earlier the score is used, the lower the value. In order to predict the score more accurately, this paper introduces the rule of Ibinhaos forgetting into the recommendation process. By adding a time weight to each score to improve the recommendation quality of the recommendation system. (3) in order to reduce the impact of a very small number of users in the nearest neighbor on the target item score, A virtual nearest neighbor matrix is obtained by using the similarity between the target user and each user in the nearest neighbor, and then the similarity is used to predict the target item again. Finally, in order to verify the effectiveness of the proposed improved algorithm, MovieLens dataset is used to compare the traditional collaborative filtering recommendation algorithm with the improved algorithm proposed in this paper. The experimental results show that the improved algorithm proposed in this paper is more effective.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP391.3
【相似文献】
相关期刊论文 前10条
1 徐义峰;徐云青;刘晓平;;一种基于时间序列性的推荐算法[J];计算机系统应用;2006年10期
2 余小鹏;;一种基于多层关联规则的推荐算法研究[J];计算机应用;2007年06期
3 张海玉;刘志都;杨彩;贾松浩;;基于页面聚类的推荐算法的改进[J];计算机应用与软件;2008年09期
4 张立燕;;一种基于用户事务模式的推荐算法[J];福建电脑;2009年03期
5 王晗;夏自谦;;基于蚁群算法和浏览路径的推荐算法研究[J];中国科技信息;2009年07期
6 周珊丹;周兴社;王海鹏;倪红波;张桂英;苗强;;智能博物馆环境下的个性化推荐算法[J];计算机工程与应用;2010年19期
7 王文;;个性化推荐算法研究[J];电脑知识与技术;2010年16期
8 张恺;秦亮曦;宁朝波;李文阁;;改进评价估计的混合推荐算法研究[J];微计算机信息;2010年36期
9 夏秀峰;代沁;丛丽晖;;用户显意识下的多重态度个性化推荐算法[J];计算机工程与应用;2011年16期
10 杨博;赵鹏飞;;推荐算法综述[J];山西大学学报(自然科学版);2011年03期
相关会议论文 前10条
1 王韬丞;罗喜军;杜小勇;;基于层次的推荐:一种新的个性化推荐算法[A];第二十四届中国数据库学术会议论文集(技术报告篇)[C];2007年
2 唐灿;;基于模糊用户心理模式的个性化推荐算法[A];2008年计算机应用技术交流会论文集[C];2008年
3 秦国;杜小勇;;基于用户层次信息的协同推荐算法[A];第二十一届中国数据库学术会议论文集(技术报告篇)[C];2004年
4 周玉妮;郑会颂;;基于浏览路径选择的蚁群推荐算法:用于移动商务个性化推荐系统[A];社会经济发展转型与系统工程——中国系统工程学会第17届学术年会论文集[C];2012年
5 苏日启;胡皓;汪秉宏;;基于网络的含时推荐算法[A];第五届全国复杂网络学术会议论文(摘要)汇集[C];2009年
6 梁莘q,
本文编号:2129394
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2129394.html