基于动态检测的Android平台应用程序行为分析研究与实现
[Abstract]:With the rapid development of mobile Internet in recent years, the rapid popularity of smart phones, especially the Android platform's smartphone market share has increased year by year. Because of its own characteristics and market characteristics of the Android platform, the malicious behavior of the software on the Android platform has brought huge losses to the users. Therefore, the Android platform software line The research is the trend of the situation. The research of software behavior for PC and WEB has become more mature, and the Android platform is different from the software and hardware. Therefore, the research on the behavior related to the Android platform software is necessary. At present, a lot of work has been carried out at home and abroad for the research on software behavior. The method of behavior detection based on behavior detection. The method based on behavior detection can be divided into static detection and dynamic detection based on whether the application program is running or not. The principle of static detection is simple, the recognition method is simple and there are many disadvantages. Therefore, the main research of dynamic detection can be divided into application level in the research of dynamic detection. Detection and system level detection. The traditional application level detection does not take into account the system environment factors, but also faces some characteristic code detection problems. While the traditional system level detection will change the system kernel in most cases, make the system unstable, and most of the research is the analysis of the established rules that do not carry out the evaluation rules. The process of learning and parameter optimization, therefore, this article is to start from dynamic detection, mining the environment data of the system running, without destroying the stability of the Android kernel layer, to find out the hidden application behavior behind the system environment data, and make the monitoring model self repair with constant detection. In this paper, the recognition accuracy is gradually improved. The main work of this paper is as follows: 1) defining different software behavior, sampling a large number of system environment data, clustering and quantifying, generating the feature sequence set.2 of single attribute data. Sequence.3) the frequency of encoding sequence in different software behavior is counted, as the initial emission matrix of the hidden Markoff model to model the implicit Markoff model to model.4) the characteristic sequence of the system environmental data, and the system environment number produced by the established hidden Markov model for the subsequent behavior is used. According to the calculation of hidden Markov estimation, the recognition of follow-up behavior is realized, and the model.5 is continuously optimized in the follow-up identification process. The method is proved to be effective through experimental comparison. By the comprehensive analysis of the system environmental data, the hidden Marco model is established to carry out the way of software behavior recognition. The unified method has some advantages, and also provides a basic research for the software security research of Android platform.
【学位授予单位】:昆明理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP316;TP311.5
【参考文献】
相关期刊论文 前10条
1 李海生;黄媛洁;宋璇;杜军平;陈国润;丁富强;;手机基站定位数据可视分析[J];大数据;2017年01期
2 徐利敏;魏翔;;Android平台说话人认证系统的并行计算与设计[J];计算机工程与应用;2017年03期
3 秦中元;徐毓青;梁彪;张群芳;黄杰;;一种Android平台恶意软件静态检测方法[J];东南大学学报(自然科学版);2013年06期
4 郭小芳;李锋;;多元时间序列聚类算法分析[J];河南师范大学学报(自然科学版);2012年06期
5 卜哲;徐子先;;基于Android系统的智能终端软件行为分析方法[J];信息网络安全;2012年03期
6 朱连江;马炳先;赵学泉;;基于轮廓系数的聚类有效性分析[J];计算机应用;2010年S2期
7 ;A malware detection model based on a negative selection algorithm with penalty factor[J];Science China(Information Sciences);2010年12期
8 曾永红;俞利;;归一化积相关算法的精度优化策略研究[J];微计算机信息;2010年16期
9 孟宪苹;宋菲;李俊;;基于序列模式挖掘的入侵检测系统的研究[J];计算机技术与发展;2008年03期
10 周东清,张海锋,张绍武,胡祥培;基于HMM的分布式拒绝服务攻击检测方法[J];计算机研究与发展;2005年09期
相关博士学位论文 前2条
1 芦天亮;基于人工免疫系统的恶意代码检测技术研究[D];北京邮电大学;2013年
2 吴义坚;基于隐马尔科夫模型的语音合成技术研究[D];中国科学技术大学;2006年
相关硕士学位论文 前5条
1 周帆;基于安卓内存的证据挖掘与关联分析[D];南京邮电大学;2016年
2 任杰麟;基于SNS的威客平台关键技术的研究与应用[D];西南石油大学;2015年
3 王进磊;基于移动云计算的学习资源管理与平台构建[D];河南师范大学;2014年
4 朱曦;基于改进K均值聚类的证券时间序列奇异点研究[D];昆明理工大学;2013年
5 刘超;Android异常检测系统的研究与实现[D];北京交通大学;2013年
,本文编号:2136260
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2136260.html