机器视觉技术在牛肉生理成熟度检测中的应用
发布时间:2018-07-22 13:02
【摘要】:在牛肉生理成熟度的检测中,脊椎骨末端软骨区域的正确分割和软骨区域特征参数的选取是非常重要的2个步骤,将直接影响检测的准确度。本研究首先对采集到的脊骨图像进行预处理将其转换为二值图像,然后利用几何不变矩及Hopfield神经网络完成对软骨区域的自动分割和识别,并选取内角方差、凹凸度和区域密集性作为牛肉生理成熟度的评判标准。在对生理成熟度分别为A、B、C、D、E级的各20具牛肉样本进行实验检测的过程中,平均准确率达到了92%。结果表明:该方法可以有效的消除牛肉切割过程中产生的骨屑及脂肪粒对于检测结果的影响,具有较好的检测效果。
[Abstract]:In the detection of beef physiological maturity, the correct segmentation of the cartilage region at the end of the vertebra and the selection of the characteristic parameters of the cartilage region are two very important steps, which will directly affect the accuracy of the detection. In this study, the spinal image was preprocessed to transform it into binary image, and then the geometric invariant moment and hopfield neural network were used to segment and recognize the cartilage region automatically, and the internal angle variance was selected. Concavity and convexity and regional density are the criteria for evaluating physiological maturity of beef. The average accuracy was 92in the experiment of 20 beef samples with physiological maturity of AZB (C ~ (+) C ~ (1) C ~ (1) C ~ (1) ~ (1) (E). The results show that this method can effectively eliminate the effect of bone scraps and fat particles produced during beef cutting on the detection results, and has a better detection effect.
【作者单位】: 河北农业大学信息科学与技术学院;华北电力大学(保定)机械工程系;
【基金】:河北农业大学理工基金项目(LG20130703);河北农业大学理工基金项目(LG20130701)
【分类号】:TP391.41;TS251.52
本文编号:2137547
[Abstract]:In the detection of beef physiological maturity, the correct segmentation of the cartilage region at the end of the vertebra and the selection of the characteristic parameters of the cartilage region are two very important steps, which will directly affect the accuracy of the detection. In this study, the spinal image was preprocessed to transform it into binary image, and then the geometric invariant moment and hopfield neural network were used to segment and recognize the cartilage region automatically, and the internal angle variance was selected. Concavity and convexity and regional density are the criteria for evaluating physiological maturity of beef. The average accuracy was 92in the experiment of 20 beef samples with physiological maturity of AZB (C ~ (+) C ~ (1) C ~ (1) C ~ (1) ~ (1) (E). The results show that this method can effectively eliminate the effect of bone scraps and fat particles produced during beef cutting on the detection results, and has a better detection effect.
【作者单位】: 河北农业大学信息科学与技术学院;华北电力大学(保定)机械工程系;
【基金】:河北农业大学理工基金项目(LG20130703);河北农业大学理工基金项目(LG20130701)
【分类号】:TP391.41;TS251.52
【相似文献】
相关期刊论文 前10条
1 倪健威;用染色法测定棉花成熟度的研究[J];纺织学报;1990年09期
2 Devron P.Thibodeaux;一文;;关于棉花成熟度试验特殊应用方面的情况介绍[J];纤维标准与检验;1992年08期
3 倪健威;棉花成熟度与染色品色差关系的研讨[J];纺织学报;1985年06期
4 陈志勇;;棉花的色度与成熟度[J];纤维标准与检验;1991年01期
5 王能侯;;关于原棉成熟度测量方法的讨论[J];中国纤检;1982年03期
6 窦海萍;倪友博;;用气流仪测定棉花成熟度的理论与实践[J];山东纺织科技;1993年01期
7 邱福学;;浅谈烤烟分级工作中成熟度的把握[J];科技咨询导报;2007年14期
8 孙思胜;贾志伟;高豪杰;邵远志;;不同成熟度的番木瓜果实对采后1-MCP处理的反应[J];食品科技;2012年06期
9 ;用偏振光成熟度仪测定长绒棉成熟度[J];上海纺织科技动态;1978年02期
10 ;英研制检验水果成熟度新装置[J];中国果菜;1999年01期
相关博士学位论文 前1条
1 孙静涛;基于光谱和图像信息融合的哈密瓜成熟度无损检测研究[D];石河子大学;2017年
相关硕士学位论文 前2条
1 陈鹏;烟草智能化精准分拣控制系统软件的设计与实现[D];电子科技大学;2014年
2 孙琪皓;基于图像识别的智能电子锁系统设计[D];湖南科技大学;2016年
,本文编号:2137547
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2137547.html