面向产品评论的情感文本分类研究
[Abstract]:With the development of e-commerce, the product comment information on the website is increasing day by day. Consumers express their views, positions, opinions on the products or services they purchase, which can reflect the quality of the products or services in different ways. According to the online product review information, the intended consumer can know the required product information, and the merchant can improve the product or service deficiency in time. Because of the disorderly comments published by consumers, it is necessary to analyze and classify comment texts in order to help other consumers better understand product information and get timely feedback from users. Text emotional analysis is mainly to analyze the emotional characteristics of text. In order to extract the emotional features of text effectively, this paper extracts the text by feature selection algorithm and emotion dictionary, and then classifies the text. The main contents of this paper are as follows: (1) based on chi-square statistics, the traditional chi-square statistical algorithm is improved for the problem that there is redundancy between n-gram feature items, which affects the actual classification effect, based on the n-gram feature extraction and redundancy reduction method. By using the correlation between co-occurrence and non-co-occurrence among features, the n-gram feature with relevance is selected, and then the correlation between feature and category is used to judge whether the multivariate features are redundant or not, and the redundant features are reduced. In order to select a high category of correlation and low redundancy of n-gram features. Finally, the method is tested on different affective corpus using SVM algorithm. The experimental results show that the method improves the efficiency of text emotion classification and verifies the effectiveness of the method. (2) the affective dictionary based approach. The emotion features of the text can be extracted directly, but the quality of the emotion dictionary will affect the classification effect, and the contextual structure of the modified emotion words will also affect the polarity of the emotional words in the text. Aiming at the construction of emotion dictionary and the change of polarity of emotion words, the emotion classification based on product attributes is proposed. In this method, we first use Word2vec to train features to generate word vectors, cluster similar features by using the similarity between word vectors, extract attribute words and affective words by using the dependency between attribute words and affective words, and then analyze the affective text features. Construct domain emotion dictionary, extract attribute words, affective words and its context structure features of text. Finally, combine SVM algorithm to classify text, analyze the influence of this method on emotion classification, and verify that this method is effective for classification. On this basis, the influence of LDA theme features on text affective classification is analyzed. In order to consider the structural information of affective features, a method of generating n-gram features based on n-gram model is proposed. At the same time, the multivariate features are reduced by redundancy. Then, the LDA topic probability is used as the feature, and the SVM algorithm is used to test the different affective corpus to analyze the influence of different n-gram features combined with LDA on text classification. Finally, the method is compared with different classification methods. The experimental results show that the method improves the result of text emotion classification and verifies the effectiveness of the method.
【学位授予单位】:安徽大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.1
【相似文献】
相关期刊论文 前10条
1 李洋;;微博文本规范化研究综述[J];现代计算机(专业版);2014年03期
2 于鸣镝;;再论读者与文本[J];图书情报工作;2006年01期
3 梅约翰;早期中国文本诠释的折衷方式:以《论语》为例[J];中国哲学史;2004年02期
4 阎立峰;;电视文本的美、善、真[J];现代传播-中国传媒大学学报;2009年03期
5 周佩妮;;略论文本概念的两组对应范畴[J];图书馆理论与实践;2006年06期
6 万敏;;《老王》文本意义之“冷暖”维度建构[J];现代语文(教学研究版);2013年05期
7 胡昌斗;;关于文本概念语义规范的思考[J];中国图书馆学报;2006年04期
8 王燕子;;介质:文本媒介的意义言说[J];阴山学刊;2012年05期
9 于鸣镝;;我的读者观[J];图书馆论坛;2005年06期
10 李佳徽;;多媒介文本联合解码——产品服务体系设计[J];中国包装工业;2013年18期
相关会议论文 前1条
1 佴荣本;;文学史的文本与人本[A];2006年江苏省哲学社会科学界学术大会论文集(下)[C];2006年
相关重要报纸文章 前5条
1 许彦达;朗读不是鹦鹉学舌[N];中国教师报;2005年
2 徐妍;在伤痛中承担意义[N];文艺报;2010年
3 山东省宁阳县鹤山乡中心小学 尹承香;走进人物的心灵[N];学知报;2011年
4 王志耕;从失语走向历史透视[N];中华读书报;2002年
5 藏策;图文书的歧途[N];中国新闻出版报;2003年
相关博士学位论文 前3条
1 谢云才;文本意义的诠释与翻译[D];上海外国语大学;2010年
2 李金凤;“评价—顺应”视角的读者定位研究[D];复旦大学;2009年
3 黄小扬;背景知识对英语阅读理解的干预效应研究[D];浙江大学;2012年
相关硕士学位论文 前10条
1 张剑;基于概念的文本表示模型的研究[D];清华大学;2006年
2 王宣又;心理空间与文学文本意义的认知探寻[D];四川外语学院;2011年
3 王海霞;文学翻译理解过程——文本视界与译者视界的融合[D];湖南师范大学;2004年
4 柴凤英;文本意义的阐释与建构[D];内蒙古师范大学;2004年
5 程敏;关联理论与翻译[D];南京师范大学;2005年
6 张婷婷;再现译者决策过程[D];浙江大学;2006年
7 曹忠华;儿童文学视野下小学神话类文本教学探究[D];苏州大学;2014年
8 张鹏;基于FrameNet框架关系的文本蕴含识别研究[D];山西大学;2012年
9 卓今;《马语者》翻译实践报告[D];中南大学;2012年
10 林怡;视点—文本意义的生成[D];福建师范大学;2008年
,本文编号:2141476
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2141476.html